An Improved Multifractal Formalism and Self Similar Measures
dc.citation.bibtexName | article | en_US |
dc.citation.journalTitle | Journal of Math Analysis and Application | en_US |
dc.contributor.author | Riedi, Rudolf H. | en_US |
dc.contributor.org | Digital Signal Processing (http://dsp.rice.edu/) | en_US |
dc.date.accessioned | 2007-10-31T01:00:57Z | en_US |
dc.date.available | 2007-10-31T01:00:57Z | en_US |
dc.date.issued | 1995-01-01 | en_US |
dc.date.modified | 2004-11-05 | en_US |
dc.date.submitted | 2004-01-14 | en_US |
dc.description | Journal Paper | en_US |
dc.description.abstract | To characterize the geometry of a measure, its so-called generalized dimensions D(<i>q</i>) have been introduced recently. The mathematically precise definition given by Falconer turns out to be unsatisfactory for reasons of convergence as well as of undesired sensitivity to the particular choice of coordinates in the negative <i>q</i> range. A new definition is introduced, which is based on box-counting too, but which carries relevant information also for negative <i>q</i>. In particular, rigorous proofs are provided for the Legendre connection between generalized dimensions and the so-called multifractal spectrum and for the implicit formula giving the generalized dimensions of self-similar measures, which was until now known only for positive <i>q</i>. | en_US |
dc.identifier.citation | R. H. Riedi, "An Improved Multifractal Formalism and Self Similar Measures," <i>Journal of Math Analysis and Application,</i> 1995. | en_US |
dc.identifier.doi | http://dx.doi.org/10.1006/jmaa.1995.1030 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/20262 | en_US |
dc.language.iso | eng | en_US |
dc.subject | Temporary | en_US |
dc.subject.keyword | Temporary | en_US |
dc.subject.other | Multifractals | en_US |
dc.title | An Improved Multifractal Formalism and Self Similar Measures | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
Files
Original bundle
1 - 1 of 1