Level structures on Abelian varieties, Kodaira dimensions, and Lang's conjecture
dc.citation.firstpage | 523 | en_US |
dc.citation.journalTitle | Advances in Mathematics | en_US |
dc.citation.lastpage | 540 | en_US |
dc.citation.volumeNumber | 329 | en_US |
dc.contributor.author | Abramovich, Dan | en_US |
dc.contributor.author | Várilly-Alvarado, Anthony | en_US |
dc.date.accessioned | 2018-06-28T20:50:03Z | en_US |
dc.date.available | 2018-06-28T20:50:03Z | en_US |
dc.date.issued | 2018 | en_US |
dc.description.abstract | Assuming Lang's conjecture, we prove that for a prime p, number field K, and positive integer g, there is an integer r such that no principally polarized abelian variety A/K has full level-pr structure. To this end, we use a result of Zuo to prove that for each closed subvariety X in the moduli space Ag of principally polarized abelian varieties of dimension g, there exists a level mX such that the irreducible components of the preimage of X in Ag[m] are of general type for m>mX. | en_US |
dc.identifier.citation | Abramovich, Dan and Várilly-Alvarado, Anthony. "Level structures on Abelian varieties, Kodaira dimensions, and Lang's conjecture." <i>Advances in Mathematics,</i> 329, (2018) Elsevier: 523-540. https://doi.org/10.1016/j.aim.2017.12.023. | en_US |
dc.identifier.doi | https://doi.org/10.1016/j.aim.2017.12.023 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/102314 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | This is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier. | en_US |
dc.subject.keyword | Abelian varieties | en_US |
dc.subject.keyword | Moduli spaces | en_US |
dc.subject.keyword | Birational geometry | en_US |
dc.subject.keyword | Rational points | en_US |
dc.title | Level structures on Abelian varieties, Kodaira dimensions, and Lang's conjecture | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | post-print | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Alevels-AdvancesRevision.pdf
- Size:
- 396.53 KB
- Format:
- Adobe Portable Document Format
- Description: