Level structures on Abelian varieties, Kodaira dimensions, and Lang's conjecture

dc.citation.firstpage523en_US
dc.citation.journalTitleAdvances in Mathematicsen_US
dc.citation.lastpage540en_US
dc.citation.volumeNumber329en_US
dc.contributor.authorAbramovich, Danen_US
dc.contributor.authorVárilly-Alvarado, Anthonyen_US
dc.date.accessioned2018-06-28T20:50:03Zen_US
dc.date.available2018-06-28T20:50:03Zen_US
dc.date.issued2018en_US
dc.description.abstractAssuming Lang's conjecture, we prove that for a prime p, number field K, and positive integer g, there is an integer r such that no principally polarized abelian variety A/K has full level-pr structure. To this end, we use a result of Zuo to prove that for each closed subvariety X in the moduli space Ag of principally polarized abelian varieties of dimension g, there exists a level mX such that the irreducible components of the preimage of X in Ag[m] are of general type for m>mX.en_US
dc.identifier.citationAbramovich, Dan and Várilly-Alvarado, Anthony. "Level structures on Abelian varieties, Kodaira dimensions, and Lang's conjecture." <i>Advances in Mathematics,</i> 329, (2018) Elsevier: 523-540. https://doi.org/10.1016/j.aim.2017.12.023.en_US
dc.identifier.doihttps://doi.org/10.1016/j.aim.2017.12.023en_US
dc.identifier.urihttps://hdl.handle.net/1911/102314en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier.en_US
dc.subject.keywordAbelian varietiesen_US
dc.subject.keywordModuli spacesen_US
dc.subject.keywordBirational geometryen_US
dc.subject.keywordRational pointsen_US
dc.titleLevel structures on Abelian varieties, Kodaira dimensions, and Lang's conjectureen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpost-printen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Alevels-AdvancesRevision.pdf
Size:
396.53 KB
Format:
Adobe Portable Document Format
Description: