Imaging genetics via sparse canonical correlation analysis

dc.citation.firstpage740en_US
dc.citation.journalTitle2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI)en_US
dc.citation.lastpage743en_US
dc.contributor.authorChi, Eric C.en_US
dc.contributor.authorAllen, Genevera I.en_US
dc.contributor.authorZhou, Huaen_US
dc.contributor.authorKohannim, Omiden_US
dc.contributor.authorLange, Kennethen_US
dc.contributor.authorThompson, Paul M.en_US
dc.date.accessioned2014-10-08T21:25:35Zen_US
dc.date.available2014-10-08T21:25:35Zen_US
dc.date.issued2013en_US
dc.description.abstractThe collection of brain images from populations of subjects who have been genotyped with genome-wide scans makes it feasible to search for genetic effects on the brain. Even so, multivariate methods are sorely needed that can search both images and the genome for relationships, making use of the correlation structure of both datasets. Here we investigate the use of sparse canonical correlation analysis (CCA) to home in on sets of genetic variants that explain variance in a set of images. We extend recent work on penalized matrix decomposition to account for the correlations in both datasets. Such methods show promise in imaging genetics as they exploit the natural covariance in the datasets. They also avoid an astronomically heavy statistical correction for searching the whole genome and the entire image for promising associations.en_US
dc.identifier.citationChi, Eric C., Allen, Genevera I., Zhou, Hua, et al.. "Imaging genetics via sparse canonical correlation analysis." <i>2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI),</i> (2013) IEEE: 740-743. http://dx.doi.org/10.1109/ISBI.2013.6556581.en_US
dc.identifier.doihttp://dx.doi.org/10.1109/ISBI.2013.6556581en_US
dc.identifier.urihttps://hdl.handle.net/1911/77452en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.rightsThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by IEEE.en_US
dc.subject.keyworddiffusion tensor imagingen_US
dc.subject.keywordgenome wide associationen_US
dc.subject.keywordcanonical correlation analysisen_US
dc.subject.keywordsparsityen_US
dc.subject.keywordlassoen_US
dc.titleImaging genetics via sparse canonical correlation analysisen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpost-printen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms444172.pdf
Size:
1.67 MB
Format:
Adobe Portable Document Format
Description: