Pseudo-Anosov subgroups of general fibered 3–manifold groups

dc.citation.firstpage1141en_US
dc.citation.journalTitleTransactions of the American Mathematical Society, Series Ben_US
dc.citation.lastpage1172en_US
dc.citation.volumeNumber10en_US
dc.contributor.authorLeininger, Christopheren_US
dc.contributor.authorRussell, Jacoben_US
dc.contributor.orgMathematicsen_US
dc.date.accessioned2024-05-03T15:51:08Zen_US
dc.date.available2024-05-03T15:51:08Zen_US
dc.date.issued2023en_US
dc.description.abstractWe show that finitely generated and purely pseudo-Anosov subgroups of fundamental groups of fibered 3–manifolds with reducible monodromy are convex cocompact as subgroups of the mapping class group via the Birman exact sequence. Combined with results of Dowdall–Kent–Leininger and Kent–Leininger–Schleimer, this establishes the result for the image of all such fibered 3–manifold groups in the mapping class group.en_US
dc.identifier.citationLeininger, C., & Russell, J. (2023). Pseudo-Anosov subgroups of general fibered 3–manifold groups. Transactions of the American Mathematical Society, Series B, 10(32), 1141–1172. https://doi.org/10.1090/btran/157en_US
dc.identifier.digitalS2330-0000-2023-00157-1en_US
dc.identifier.doihttps://doi.org/10.1090/btran/157en_US
dc.identifier.urihttps://hdl.handle.net/1911/115539en_US
dc.language.isoengen_US
dc.publisherAmerican Mathematical Societyen_US
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/en_US
dc.titlePseudo-Anosov subgroups of general fibered 3–manifold groupsen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
S2330-0000-2023-00157-1.pdf
Size:
492 KB
Format:
Adobe Portable Document Format