BioSciences Publications
Permanent URI for this collection
BioSciences faculty publications.
For works published before Summer 2014, please see the Biochemistry & Cell Biology and Ecology & Evolutionary Biology collections.
Browse
Browsing BioSciences Publications by Title
Now showing 1 - 20 of 461
Results Per Page
Sort Options
Item A 3D inᅠvitro model of patient-derived prostate cancer xenograft for controlled interrogation of inᅠvivo tumor-stromal interactions(Elsevier, 2016) Fong, Eliza L.S.; Wan, Xinhai; Yang, Jun; Morgado, Micaela; Mikos, Antonios G.; Harrington, Daniel Anton; Navone, Nora M.; Farach-Carson, Mary C.Patient-derived xenograft (PDX) models better represent human cancer than traditional cell lines. However, the complex in vivo environment makes it challenging to employ PDX models to investigate tumor-stromal interactions, such as those that mediate prostate cancer (PCa) bone metastasis. Thus, we engineered a defined three-dimensional (3D) hydrogel system capable of supporting the co-culture of PCa PDX cells and osteoblastic cells to recapitulate the PCa-osteoblast unit within the bone metastatic microenvironment in vitro. Our 3D model not only maintained cell viability but also preserved the typical osteogenic phenotype of PCa PDX cells. Additionally, co-culture cellularity was maintained over that of either cell type cultured alone, suggesting that the PCa-osteoblast cross-talk supports PCa progression in bone, as is hypothesized to occur in patients with prostatic bone metastasis. Strikingly, osteoblastic cells co-cultured with PCa PDX tumoroids organized around the tumoroids, closely mimicking the architecture of PCa metastases in bone. Finally, tumor-stromal signaling mediated by the fibroblast growth factor axis tightly paralleled that in the in vivo counterpart. Together, these findings indicate that this 3D PCa PDX model recapitulates important pathological properties of PCa bone metastasis, and validate the use of this model for controlled and systematic interrogation of complex in vivo tumor-stromal interactions.Item A Bayesian Approach to Social Structure Uncovers Cryptic Regulation of Group Dynamics in Drosophila melanogaster(The University of Chicago Press for The American Society of Naturalists, 2015) Foley, Brad R.; Saltz, Julia Barbara; Nuzhdin, Sergey V.; Marjoram, PaulUnderstanding the mechanisms that give rise to social structure is central to predicting the evolutionary and ecological outcomes of social interactions. Modeling this process is challenging, because all individuals simultaneously behave in ways that shape their social environments—a process called social niche construction (SNC). In earlier work, we demonstrated that aggression acts as an SNC trait in fruit flies (Drosophila melanogaster), but the mechanisms of that process remained cryptic. Here, we analyze how individual social group preferences generate overall social structure. We use a combination of agent-based simulation and approximate Bayesian computation to fit models to empirical data. We confirm that genetic variation in aggressive behavior influences social group structure. Furthermore, we find that female decamping due to male behavior may play an underappreciated role in structuring social groups. Male-male aggression may sometimes destabilize groups, but it may also be an SNC behavior for shaping desirable groups for females. Density intensifies female social preferences; thus, the role of female behavior in shaping group structure may become more important at high densities. Our ability to model the ontogeny of group structure demonstrates the utility of the Bayesian model–based approach in social behavioral studies.Item A Burrowing/Tunneling Assay for Detection of Hypoxia in Drosophila melanogaster Larvae(JoVE, 2018) Qiang, Karen M.; Zhou, Fanli; Beckingham, Kathleen M.Oxygen deprivation in animals can result from exposure to low atmospheric oxygen levels or from internal tissue damage that interferes with oxygen distribution. It is also possible that aberrant behavior of oxygen-sensing neurons could induce hypoxia-like behavior in the presence of normal oxygen levels. In D. melanogaster, development at low oxygen levels results in inhibition of growth and sluggish behavior during the larval phases. However, these established manifestations of oxygen deficit overlap considerably with the phenotypes of many mutations that regulate growth, stress responses or locomotion. As result, there is currently no assay available to identify i) cellular hypoxia induced by a mutation or ii) hypoxia-like behavior when induced by abnormal neuronal behavior. We have recently identified two distinctive behaviors in D. melanogaster larvae that occur at normal oxygen levels in response to internal detection of hypoxia. First, at all stages, such larvae avoid burrowing into food, often straying far away from a food source. Second, tunneling into a soft substratum, which normally occurs during the wandering third instar stage is completely abolished if larvae are hypoxic. The assay described here is designed to detect and quantitate these behaviors and thus to provide a way to detect hypoxia induced by internal damage rather than low external oxygen. Assay plates with an agar substratum and a central plug of yeast paste are used to support animals through larval life. The positions and state of the larvae are tracked daily as they proceed from first to third instar. The extent of tunneling into the agar substratum during wandering phase is quantitated after pupation using NIH ImageJ. The assay will be of value in determining when hypoxia is a component of a mutant phenotype and thus provide insight into possible sites of action of the gene in question.Item A collagen glucosyltransferase drives lung adenocarcinoma progression in mice(Springer Nature, 2021) Guo, Hou-Fu; Bota-Rabassedas, Neus; Terajima, Masahiko; Leticia Rodriguez, B.; Gibbons, Don L.; Chen, Yulong; Banerjee, Priyam; Tsai, Chi-Lin; Tan, Xiaochao; Liu, Xin; Yu, Jiang; Tokmina-Roszyk, Michal; Stawikowska, Roma; Fields, Gregg B.; Miller, Mitchell D.; Wang, Xiaoyan; Lee, Juhoon; Dalby, Kevin N.; Creighton, Chad J.; Phillips, George N.Jr.; Tainer, John A.; Yamauchi, Mitsuo; Kurie, Jonathan M.Cancer cells are a major source of enzymes that modify collagen to create a stiff, fibrotic tumor stroma. High collagen lysyl hydroxylase 2 (LH2) expression promotes metastasis and is correlated with shorter survival in lung adenocarcinoma (LUAD) and other tumor types. LH2 hydroxylates lysine (Lys) residues on fibrillar collagen’s amino- and carboxy-terminal telopeptides to create stable collagen cross-links. Here, we show that electrostatic interactions between the LH domain active site and collagen determine the unique telopeptidyl lysyl hydroxylase (tLH) activity of LH2. However, CRISPR/Cas-9-mediated inactivation of tLH activity does not fully recapitulate the inhibitory effect of LH2 knock out on LUAD growth and metastasis in mice, suggesting that LH2 drives LUAD progression, in part, through a tLH-independent mechanism. Protein homology modeling and biochemical studies identify an LH2 isoform (LH2b) that has previously undetected collagen galactosylhydroxylysyl glucosyltransferase (GGT) activity determined by a loop that enhances UDP-glucose-binding in the GLT active site and is encoded by alternatively spliced exon 13 A. CRISPR/Cas-9-mediated deletion of exon 13 A sharply reduces the growth and metastasis of LH2b-expressing LUADs in mice. These findings identify a previously unrecognized collagen GGT activity that drives LUAD progression.Item A comparative approach to testing hypotheses for the evolution of sex-biased dispersal in bean beetles(Wiley, 2015) Downey, Michelle H.; Searle, Rebecca; Bellur, Sunil; Geiger, Adam; Maitner, Brian S.; Ohm, Johanna R.; Tuda, Midori; Miller, Tom E.X.Understanding the selective forces that shape dispersal strategies is a fundamental goal of evolutionary ecology and is increasingly important in changing, human-altered environments. Sex-biased dispersal (SBD) is common in dioecious taxa, and understanding variation in the direction and magnitude of SBD across taxa has been a persistent challenge. We took a comparative, laboratory-based approach using 16 groups (species or strains) of bean beetles (generaᅠAcanthoscelides,ᅠCallosobruchus, andᅠZabrotes, including 10 strains of one species) to test two predictions that emerge from dominant hypotheses for the evolution of SBD: (1) groups that suffer greater costs of inbreeding should exhibit greater SBD in favor of either sex (inbreeding avoidance hypothesis) and (2) groups with stronger local mate competition should exhibit greater male bias in dispersal (kin competition avoidance hypothesis). We used laboratory experiments to quantify SBD in crawling dispersal, the fitness effects of inbreeding, and the degree of polygyny (number of female mates per male), a proxy for local mate competition. While we found that both polygyny and male-biased dispersal were common across bean beetle groups, consistent with the kin competition avoidance hypothesis, quantitative relationships between trait values did not support the predictions. Across groups, there was no significant association between SBD and effects of inbreeding nor SBD and degree of polygyny, using either raw values or phylogenetically independent contrasts. We discuss possible limitations of our experimental approach for detecting the predicted relationships, as well as reasons why single-factor hypotheses may be too simplistic to explain the evolution of SBD.Item A de novo matrix for macroscopic living materials from bacteria(Springer Nature, 2022) Molinari, Sara; Tesoriero, Robert F.; Li, Dong; Sridhar, Swetha; Cai, Rong; Soman, Jayashree; Ryan, Kathleen R.; Ashby, Paul D.; Ajo-Franklin, Caroline M.Engineered living materials (ELMs) embed living cells in a biopolymer matrix to create materials with tailored functions. While bottom-up assembly of macroscopic ELMs with a de novo matrix would offer the greatest control over material properties, we lack the ability to genetically encode a protein matrix that leads to collective self-organization. Here we report growth of ELMs from Caulobacter crescentus cells that display and secrete a self-interacting protein. This protein formed a de novo matrix and assembled cells into centimeter-scale ELMs. Discovery of design and assembly principles allowed us to tune the composition, mechanical properties, and catalytic function of these ELMs. This work provides genetic tools, design and assembly rules, and a platform for growing ELMs with control over both matrix and cellular structure and function.Item A deep learning solution for crystallographic structure determination(International Union of Crystallography, 2023) Pan, T.; Jin, S.; Miller, M. D.; Kyrillidis, A.; Phillips, G. N.The general de novo solution of the crystallographic phase problem is difficult and only possible under certain conditions. This paper develops an initial pathway to a deep learning neural network approach for the phase problem in protein crystallography, based on a synthetic dataset of small fragments derived from a large well curated subset of solved structures in the Protein Data Bank (PDB). In particular, electron-density estimates of simple artificial systems are produced directly from corresponding Patterson maps using a convolutional neural network architecture as a proof of concept.Item A discrete intermediate for the biosynthesis of both the enediyne core and the anthraquinone moiety of enediyne natural products(PNAS, 2023) Bhardwaj, Minakshi; Cui, Zheng; Daniel Hankore, Erome; Moonschi, Faruk H.; Saghaeiannejad Esfahani, Hoda; Kalkreuter, Edward; Gui, Chun; Yang, Dong; Phillips, George N.; Thorson, Jon S.; Shen, Ben; Van Lanen, Steven G.The enediynes are structurally characterized by a 1,5-diyne-3-ene motif within a 9- or 10-membered enediyne core. The anthraquinone-fused enediynes (AFEs) are a subclass of 10-membered enediynes that contain an anthraquinone moiety fused to the enediyne core as exemplified by dynemicins and tiancimycins. A conserved iterative type I polyketide synthase (PKSE) is known to initiate the biosynthesis of all enediyne cores, and evidence has recently been reported to suggest that the anthraquinone moiety also originates from the PKSE product. However, the identity of the PKSE product that is converted to the enediyne core or anthraquinone moiety has not been established. Here, we report the utilization of recombinant E. coli coexpressing various combinations of genes that encode a PKSE and a thioesterase (TE) from either 9- or 10-membered enediyne biosynthetic gene clusters to chemically complement ΔPKSE mutant strains of the producers of dynemicins and tiancimycins. Additionally, 13C-labeling experiments were performed to track the fate of the PKSE/TE product in the ΔPKSE mutants. These studies reveal that 1,3,5,7,9,11,13-pentadecaheptaene is the nascent, discrete product of the PKSE/TE that is converted to the enediyne core. Furthermore, a second molecule of 1,3,5,7,9,11,13-pentadecaheptaene is demonstrated to serve as the precursor of the anthraquinone moiety. The results establish a unified biosynthetic paradigm for AFEs, solidify an unprecedented biosynthetic logic for aromatic polyketides, and have implications for the biosynthesis of not only AFEs but all enediynes.Item A divide-and-conquer method for scalable phylogenetic network inference from multilocus data(Oxford University Press, 2019) Zhu, Jiafan; Liu, Xinhao; Ogilvie, Huw A.; Nakhleh, Luay K.Motivation: Reticulate evolutionary histories, such as those arising in the presence of hybridization, are best modeled as phylogenetic networks. Recently developed methods allow for statistical inference of phylogenetic networks while also accounting for other processes, such as incomplete lineage sorting. However, these methods can only handle a small number of loci from a handful of genomes. Results: In this article, we introduce a novel two-step method for scalable inference of phylogenetic networks from the sequence alignments of multiple, unlinked loci. The method infers networks on subproblems and then merges them into a network on the full set of taxa. To reduce the number of trinets to infer, we formulate a Hitting Set version of the problem of finding a small number of subsets, and implement a simple heuristic to solve it. We studied their performance, in terms of both running time and accuracy, on simulated as well as on biological datasets. The two-step method accurately infers phylogenetic networks at a scale that is infeasible with existing methods. The results are a significant and promising step towards accurate, large-scale phylogenetic network inference.Item A facile forward-genetic screen forᅠArabidopsisᅠautophagy mutants reveals twenty-one loss-of-function mutations disrupting sixᅠATGᅠgenes(Taylor & Francis, 2019) Young, Pierce G.; Passalacqua, Michael J.; Chappell, Kevin; Llinas, Roxanna J.; Bartel, BonnieMacroautophagy is a process through which eukaryotic cells degrade large substrates including organelles, protein aggregates, and invading pathogens. Over 40 autophagy-related (ATG) genes have been identified through forward-genetic screens in yeast. Although homology-based analyses have identified conserved ATG genes in plants, only a few atg mutants have emerged from forward-genetic screens in Arabidopsis thaliana. We developed a screen that consistently recovers Arabidopsis atg mutations by exploiting mutants with defective LON2/At5g47040, a protease implicated in peroxisomal quality control. Arabidopsis lon2mutants exhibit reduced responsiveness to the peroxisomally-metabolized auxin precursor indole-3-butyric acid (IBA), heightened degradation of several peroxisomal matrix proteins, and impaired processing of proteins harboring N-terminal peroxisomal targeting signals; these defects are ameliorated by preventing autophagy. We optimized a lon2 suppressor screen to expedite recovery of additional atg mutants. After screening mutagenized lon2-2 seedlings for restored IBA responsiveness, we evaluated stabilization and processing of peroxisomal proteins, levels of several ATG proteins, and levels of the selective autophagy receptor NBR1/At4g24690, which accumulates when autophagy is impaired. We recovered 21 alleles disrupting 6 ATG genes: ATG2/At3g19190, ATG3/At5g61500, ATG5/At5g17290, ATG7/At5g45900, ATG16/At5g50230, and ATG18a/At3g62770. Twenty alleles were novel, and 3 of the mutated genes lack T-DNA insertional alleles in publicly available repositories. We also demonstrate that an insertional atg11/At4g30790allele incompletely suppresses lon2 defects. Finally, we show that NBR1 is not necessary for autophagy of lon2 peroxisomes and that NBR1 overexpression is not sufficient to trigger autophagy of seedling peroxisomes, indicating that Arabidopsis can use an NBR1-independent mechanism to target peroxisomes for autophagic degradation.Item A Framework for the Systematic Selection of Biosensor Chassis for Environmental Synthetic Biology(American Chemical Society, 2022) Sridhar, Swetha; Ajo-Franklin, Caroline M.; Masiello, Caroline A.Microbial biosensors sense and report exposures to stimuli, thereby facilitating our understanding of environmental processes. Successful design and deployment of biosensors hinge on the persistence of the microbial host of the genetic circuit, termed the chassis. However, model chassis organisms may persist poorly in environmental conditions. In contrast, non-model organisms persist better in environmental conditions but are limited by other challenges, such as genetic intractability and part unavailability. Here we identify ecological, metabolic, and genetic constraints for chassis development and propose a conceptual framework for the systematic selection of environmental biosensor chassis. We identify key challenges with using current model chassis and delineate major points of conflict in choosing the most suitable organisms as chassis for environmental biosensing. This framework provides a way forward in the selection of biosensor chassis for environmental synthetic biology.Item A High-throughput, High-content, Liquid-based C. elegans Pathosystem(JoVE, 2018) Anderson, Quinton L.; Revtovich, Alexey V.; Kirienko, Natalia V.The number of new drugs identified by traditional, in vitro screens has waned, reducing the success of this approach in the search for new weapons to combat multiple drug resistance. This has led to the conclusion that researchers do not only need to find new drugs, but also need to develop new ways of finding them. Amongst the most promising candidate methods are whole-organism, in vivo assays that use high-throughput, phenotypic readouts and hosts that range from Caenorhabditis elegans to Danio rerio. These hosts have several powerful advantages, including dramatic reductions in false positive hits, as compounds that are toxic to the host and/or biounavailable are typically dropped in the initial screen, prior to costly follow up. Here we show how our assay has been used to interrogate host variation in the well-documented C. elegans—Pseudomonas aeruginosa liquid killing pathosystem. We also demonstrate several extensions of this well-worked out technique. For example, we are able to carry out high-throughput genetic screens using RNAi in 24- or 96-well plate formats to query host factors in this host-pathogen interaction. Using this assay, whole genome screens can be completed in only a few months, which can dramatically simplify the task of identifying drug targets, potentially without the need for laborious biochemical purification approaches. We also report here a variation of our method that substitutes the gram-positive bacterium Enterococcus faecalis for the gram-negative pathogen P. aeruginosa. Much as is the case for P. aeruginosa, killing by E. faecalis is time-dependent. Unlike previous C. elegans—E. faecalis assays, our assay for E. faecalis does not require preinfection, improving its safety profile and reducing the chances of contaminating liquid-handling equipment. The assay is highly robust, showing ~95% death rates 96 h post infection.Item A hybrid cyt c maturation system enhances the bioelectrical performance of engineered Escherichia coli by improving the rate-limiting step(Elsevier, 2020) Su, Lin; Fukushima, Tatsuya; Ajo-Franklin, Caroline M.Bioelectronic devices can use electron flux to enable communication between biotic components and abiotic electrodes. We have modified Escherichia coli to electrically interact with electrodes by expressing the cytochrome c from Shewanella oneidensis MR-1. However, we observe inefficient electrical performance, which we hypothesize is due to the limited compatibility of the E. coli cytochrome c maturation (Ccm) systems with MR-1 cytochrome c. Here we test whether the bioelectronic performance of E. coli can be improved by constructing hybrid Ccm systems containing protein domains from both E. coli and S. oneidensis MR-1. The hybrid CcmH increased cytochrome c expression by increasing the abundance of CymA 60%, while only slightly changing the abundance of the other cytochromes c. Electrochemical measurements showed that the overall current from the hybrid ccm strain increased 121% relative to the wildtype ccm strain, with an electron flux per cell of 12.3 ± 0.3 fA·cell−1. Additionally, the hybrid ccm strain doubled its electrical response with the addition of exogenous flavin, and quantitative analysis of this demonstrates CymA is the rate-limiting step in this electron conduit. These results demonstrate that this hybrid Ccm system can enhance the bioelectrical performance of the cyt c expressing E. coli, allowing the construction of more efficient bioelectronic devices.Item A keeper of many crypts: a behaviour-manipulating parasite attacks a taxonomically diverse array of oak gall wasp species(The Royal Society of Publishing, 2019) Ward, Anna K.G.; Khodor, Omar S.; Egan, Scott P.; Weinersmith, Kelly L.; Forbes, Andrew A.Parasites of animals and plants can encounter trade-offs between their specificity to any single host and their fitness on alternative hosts. For parasites that manipulate their host's behaviour, the added complexity of that manipulation may further limit the parasite's host range. However, this is rarely tested. The recently described crypt-keeper wasp, Euderus set, changes the behaviour of the gall wasp Bassettia pallida such that B. pallida chews a significantly smaller exit hole in the side of its larval chamber and ‘plugs’ that hole with its head before dying. Euderus set benefits from this head plug, as it facilitates the escape of the parasitoid from the crypt after it completes development. Here, we find direct and indirect evidence that E. set attacks and manipulates the behaviour of at least six additional gall wasp species, and that these hosts are taxonomically diverse. Interestingly, each of E. set's hosts has converged upon similarities in their extended phenotypes: the galls they induce on oaks share characters that may make them vulnerable to attack by E. set. The specialization required to behaviourally manipulate hosts may be less important in determining the range of hosts in this parasitoid system than other dimensions of the host–parasitoid interaction, like the host's physical defences.Item A magnesium-induced triplex pre-organizes the SAM-II riboswitch(Public Library of Science, 2017) Roy, Susmita; Lammert, Heiko; Hayes, Ryan L.; Chen, Bin; LeBlanc, Regan; Dayie, T.Kwaku; Onuchic, José Nelson; Sanbonmatsu, Karissa Y.; Center for Theoretical Biological PhysicsOur 13C- and 1H-chemical exchange saturation transfer (CEST) experiments previously revealed a dynamic exchange between partially closed and open conformations of the SAM-II riboswitch in the absence of ligand. Here, all-atom structure-based molecular simulations, with the electrostatic effects of Manning counter-ion condensation and explicit magnesium ions are employed to calculate the folding free energy landscape of the SAM-II riboswitch. We use this analysis to predict that magnesium ions remodel the landscape, shifting the equilibrium away from the extended, partially unfolded state towards a compact, pre-organized conformation that resembles the ligand-bound state. Our CEST and SAXS experiments, at different magnesium ion concentrations, quantitatively confirm our simulation results, demonstrating that magnesium ions induce collapse and pre-organization. Agreement between theory and experiment bolsters microscopic interpretation of our simulations, which shows that triplex formation between helix P2b and loop L1 is highly sensitive to magnesium and plays a key role in pre-organization. Pre-organization of the SAM-II riboswitch allows rapid detection of ligand with high selectivity, which is important for biological function.Item A maximum pseudo-likelihood approach for phylogenetic networks(BioMed Central, 2015) Yu, Yun; Nakhleh, Luay K.Abstract Background Several phylogenomic analyses have recently demonstrated the need to account simultaneously for incomplete lineage sorting (ILS) and hybridization when inferring a species phylogeny. A maximum likelihood approach was introduced recently for inferring species phylogenies in the presence of both processes, and showed very good results. However, computing the likelihood of a model in this case is computationally infeasible except for very small data sets. Results Inspired by recent work on the pseudo-likelihood of species trees based on rooted triples, we introduce the pseudo-likelihood of a phylogenetic network, which, when combined with a search heuristic, provides a statistical method for phylogenetic network inference in the presence of ILS. Unlike trees, networks are not always uniquely encoded by a set of rooted triples. Therefore, even when given sufficient data, the method might converge to a network that is equivalent under rooted triples to the true one, but not the true one itself. The method is computationally efficient and has produced very good results on the data sets we analyzed. The method is implemented in PhyloNet, which is publicly available in open source. Conclusions Maximum pseudo-likelihood allows for inferring species phylogenies in the presence of hybridization and ILS, while scaling to much larger data sets than is currently feasible under full maximum likelihood. The nonuniqueness of phylogenetic networks encoded by a system of rooted triples notwithstanding, the proposed method infers the correct network under certain scenarios, and provides candidates for further exploration under other criteria and/or data in other scenarios.Item A mechanism for increased sensitivity of acute myeloid leukemia to mitotoxic drugs(Springer Nature, 2019) Panina, Svetlana B.; Baran, Natalia; da Costa, Fabio H.Brasil; Konopleva, Marina; Kirienko, Natalia V.Mitochondria play a central and multifunctional role in the progression of tumorigenesis. Although many recent studies have demonstrated correlations between mitochondrial function and genetic makeup or originating tissue, it remains unclear why some cancers are more susceptible to mitocans (anticancer drugs that target mitochondrial function to mediate part or all of their effect). Moreover, fundamental questions of efficacy and mechanism of action in various tumor types stubbornly remain. Here we demonstrate that cancer type is a significant predictor of tumor response to mitocan treatment, and that acute myeloid leukemias (AML) show an increased sensitivity to these drugs. We determined that AML cells display particular defects in mitochondrial metabolism that underlie their sensitivity to mitocan treatment. Furthermore, we demonstrated that combinatorial treatment with a mitocan (CCCP) and a glycolytic inhibitor (2-deoxyglucose) has substantial synergy in AML cells, including primary cells from patients with AML. Our results show that mitocans, either alone or in combination with a glycolytic inhibitor, display anti-leukemia effects in doses much lower than needed to induce toxicity against normal blood cells, indicating that mitochondria may be an effective and selective therapeutic target.Item A mechanism-based computational model to capture the interconnections among epithelial-mesenchymal transition, cancer stem cells and Notch-Jagged signaling(Oncotarget, 2018) Bocci, Federico; Jolly, Mohit Kumar; George, Jason Thomas; Levine, Herbert; Onuchic, José Nelson; Center for Theoretical Biological PhysicsEpithelial-mesenchymal transition (EMT) and cancer stem cell (CSCs) formation are two fundamental and well-studied processes contributing to cancer metastasis and tumor relapse. Cells can undergo a partial EMT to attain a hybrid epithelial/mesenchymal (E/M) phenotype or a complete EMT to attain a mesenchymal one. Similarly, cells can reversibly gain or lose 'stemness'. This plasticity in cell states is modulated by signaling pathways such as Notch. However, the interconnections among the cell states enabled by EMT, CSCs and Notch signaling remain elusive. Here, we devise a computational model to investigate the coupling among the core decision-making circuits for EMT, CSCs and Notch. Our model predicts that hybrid E/M cells are most likely to associate with stem-like traits and enhanced Notch-Jagged signaling – a pathway implicated in therapeutic resistance. Further, we show that the position of the 'stemness window' on the 'EMT axis' is varied by altering the coupling strength between EMT and CSC circuits, and/or modulating Notch signaling. Finally, we analyze the gene expression profile of CSCs from several cancer types and observe a heterogeneous distribution along the 'EMT axis', suggesting that different subsets of CSCs may exist with varying phenotypes along the epithelial-mesenchymal axis. We further investigate therapeutic perturbations such as treatment with metformin, a drug associated with decreased cancer incidence and increased lifespan of patients. Our mechanism-based model explains how metformin can both inhibit EMT and blunt the aggressive potential of CSCs simultaneously, by driving the cells out of a hybrid E/M stem-like state with enhanced Notch-Jagged signaling.Item A molecular dynamics approach towards evaluating osmotic and thermal stress in the extracellular environment(Taylor & Francis, 2018) Fuentes, David; Muñoz, Nina M.; Guo, Chunxiao; Polak, Urzsula; Minhaj, Adeeb A.; Allen, William J.; Gustin, Michael C.; Cressman, Erik N.K.OBJECTIVE: A molecular dynamics approach to understanding fundamental mechanisms of combined thermal and osmotic stress induced by thermochemical ablation (TCA) is presented. METHODS: Structural models of fibronectin and fibronectin bound to its integrin receptor provide idealized models for the effects of thermal and osmotic stress in the extracellular matrix. Fibronectin binding to integrin is known to facilitate cell survival. The extracellular environment produced by TCA at the lesion boundary was modelled at 37 °C and 43 °C with added sodium chloride (NaCl) concentrations (0, 40, 80, 160, and 320 mM). Atomistic simulations of solvated proteins were performed using the GROMOS96 force field and TIP3P water model. Computational results were compared with the results of viability studies of human hepatocellular carcinoma (HCC) cell lines HepG2 and Hep3B under matching thermal and osmotic experimental conditions. RESULTS: Cell viability was inversely correlated with hyperthermal and hyperosmotic stresses. Added NaCl concentrations were correlated with a root mean square fluctuation increase of the fibronectin arginylglycylaspartic acid (RGD) binding domain. Computed interaction coefficients demonstrate preferential hydration of the protein model and are correlated with salt-induced strengthening of hydrophobic interactions. Under the combined hyperthermal and hyperosmotic stress conditions (43 °C and 320 mM added NaCl), the free energy change required for fibronectin binding to integrin was less favorable than that for binding under control conditions (37 °C and 0 mM added NaCl). CONCLUSION: Results quantify multiple measures of structural changes as a function of temperature increase and addition of NaCl to the solution. Correlations between cell viability and stability measures suggest that protein aggregates, non-functional proteins, and less favorable cell attachment conditions have a role in TCA-induced cell stress.Item A native plant competitor mediates the impact of above- and belowground damage on an invasive tree(Wiley, 2016) Carrillo, Juli; Siemann, EvanPlant competition may mediate the impacts of herbivory on invasive plant species through effects on plant growth and defense. This may predictably depend on whether herbivory occurs above or below ground and on relative plant competitive ability. We simulated the potential impact of above- or belowground damage by biocontrol agents on the growth of a woody invader (Chinese tallow tree,ᅠTriadica sebifera) through artificial herbivory, with or without competition with a native grass, little bluestem (Schizachyrium scoparium). We measured two defense responses ofᅠTriadicaᅠthrough quantifying constitutive and induced extrafloral nectar production and tolerance of above- and belowground damage (root and shoot biomass regrowth). We examined genetic variation in plant growth and defense across native (China) and invasive (United States)ᅠTriadicaᅠpopulations. Without competition, aboveground damage had a greater impact than belowground damage onᅠTriadicaᅠperformance, whereas with competition and above- and belowground damage impactedᅠTriadicaᅠsimilarly. Whole plant tolerance to damage below ground was negatively associated with tolerance to grass competitors indicating tradeoffs in the ability to tolerate herbivory vs. compete. Competition reduced investment in defensive extrafloral nectar (EFN) production. Aboveground damage inhibited rather than induced EFN production while belowground plant damage did not impact aboveground nectar production. We found some support for the evolution of increased competitive ability hypothesis for invasive plants as United States plants were larger than native China plants and were more plastic in their response to biotic stressors than China plants (they altered their root to shoot ratios dependent on herbivory and competition treatments). Our results indicate that habitat type and the presence of competitors may be a larger determinant of herbivory impact than feeding mode and suggest that integrated pest management strategies including competitive dynamics of recipient communities should be incorporated into biological control agent evaluation at earlier stages.