Earth, Environmental and Planetary Sciences Publications
Permanent URI for this collection
Browse
Browsing Earth, Environmental and Planetary Sciences Publications by Subject "Antarctic Peninsula"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Late Holocene climate change recorded in proxy records from a Bransfield Basin sediment core, Antarctic Peninsula(Co-Action Publishing, 2014) Barnard, Alex; Wellner, Julia S.; Anderson, John B.The glacimarine environment of the Antarctic Peninsula region is one of the fastest warming places on Earth today, but details of changes in the recent past remain unknown. Large distances and widespread variability separate late Holocene palaeoclimate reconstructions in this region. This study focuses on a marine sediment core collected from ca. 2000 m below sea level in the Central Bransfield Strait that serves as a key for understanding changes in this region. The core yielded a high sedimentation rate and therefore provides an exceptional high-resolution sedimentary record composed of hemipelagic sediment, with some turbidites. An age model has been created using radiocarbon dates that span the Late Holocene: 3560 cal yr BP to present. This chronostratigraphic framework was used to establish five units, which are grouped into two super-units: a lower super-unit (3560–1600 cal yr BP) and an upper super-unit (1600 cal yr BP–present), based on facies descriptions, laser particle size analysis, x-ray analysis, multi-sensor core logger data, weight percentages and isotopic values of total organic carbon and nitrogen. We interpret the signal contained within the upper super-unit as an increase in surface water irradiance and/or shortening of the sea-ice season and the five units are broadly synchronous with climatic intervals across the Antarctic Peninsula region. While the general trends of regional climatic periods are represented in the Bransfield Basin core we have examined, each additional record that is obtained adds variability to the known history of the Antarctic Peninsula, rather than clarifying specific trends.Item Modern rates of glacial sediment accumulation along a 15° S-N transect in fjords from the Antarctic Peninsula to southern Chile(Wiley, 2013) Boldt, Katherine V.; Nittrouer, Charles A.; Hallet, Bernard; Koppes, Michele N.; Forrest, Brittany K.; Wellner, Julia S.; Anderson, John B.[1] Rates of glacial erosion in temperate climates rank among the highest worldwide, and the sedimentary products of such erosion record climatic and tectonic signals in many glaciated settings, as well as temporal changes in glacier behavior. Glacial sediment yields are expected to decrease with increasing latitude because decreased temperature and meltwater production reduce glacial sliding, erosion, and sediment transfer; however, this expectation lacks a solid supportive database. Herein we present modern 210Pb-derived sediment accumulation rates on decadal to century time scales for 12 fjords spanning 15° of latitude from the Antarctic Peninsula to southern Chile and interpret the results in light of glacimarine sediment accumulation worldwide. 210Pb records from the Antarctic Peninsula show surprisingly steady sediment accumulation throughout the past century at rates of 1–7 mm yr−1, despite rapid warming and glacial retreat. Cores from the South Shetland Islands reveal accelerated sediment accumulation over the past few decades, likely due to changes in the thermal state of the glaciers in this region, which straddles the boundary between subpolar and temperate conditions. In Patagonia and Tierra del Fuego, sediment accumulates faster (11–24 mm yr−1), and previously collected seismic profiles show that rates reach meters per year close to the glacier termini. This increase in sediment accumulation rates with decreasing latitude reflects the gradient from subpolar to temperate climates and is consistent with glacial erosion being much faster in the temperate climate of southern Chile than in the polar climate of the Antarctic Peninsula.