BioSciences at Rice
Permanent URI for this community
On July 1st, 2014 the departments of Biochemistry & Cell Biology (BCB) and Ecology & Evolutionary Biology (EEB) merged to form BioSciences at Rice. This merger unites faculty engaged in research and teaching in a wide range of disciplines throughout the life sciences, creating a vibrant and diverse community of scholars and educators housed within a single department. Learn more about the department at http://biosciences.rice.edu/default.aspx.
Browse
Browsing BioSciences at Rice by Issue Date
Now showing 1 - 20 of 461
Results Per Page
Sort Options
Item The IBR5 phosphatase promotes Arabidopsis auxin responses through a novel mechanism distinct from TIR1-mediated repressor degradation(BioMed Central, 2008) Strader, Lucia C.; Monroe-Augustus, Melanie; Bartel, BonnieBackground: In Arabidopsis, INDOLE-3-BUTYRIC ACID RESPONSE5 (IBR5), a putative dual-specificity protein phosphatase, is a positive regulator of auxin response. Mutations in IBR5 result in decreased plant height, defective vascular development, increased leaf serration, fewer lateral roots, and resistance to the phytohormones auxin and abscisic acid. However, the pathways through which IBR5 influences auxin responses are not fully understood. Results: We analyzed double mutants of ibr5 with other mutants that dampen auxin responses and found that combining ibr5 with an auxin receptor mutant, tir1, enhanced auxin resistance relative to either parent. Like other auxin-response mutants, auxin-responsive reporter accumulation was reduced in ibr5. Unlike other auxin-resistant mutants, the Aux/IAA repressor reporter protein AXR3NT-GUS was not stabilized in ibr5. Similarly, the Aux/IAA repressor IAA28 was less abundant in ibr5 than in wild type. ibr5 defects were not fully rescued by overexpression of a mutant form of IBR5 lacking the catalytic cysteine residue. Conclusion: Our genetic and molecular evidence suggests that IBR5 is a phosphatase that promotes auxin responses, including auxin-inducible transcription, differently than the TIR1 auxin receptor and without destabilizing Aux/IAA repressor proteins. Our data are consistent with the possibility that auxin-responsive transcription can be modulated downstream of TIR1-mediated repressor degradation.Item Matrix proteins are inefficiently imported into Arabidopsis peroxisomes lacking the receptor-docking peroxin PEX14(Springer, 2011) Monroe-Augustus, Melanie; Ramón, Naxhiely Martínez; Ratzel, Sarah E.; Lingard, Matthew J.; Christensen, Sarah E.; Murali, Chaya; Bartel, BonnieMutations in peroxisome biogenesis proteins (peroxins) can lead to developmental deficiencies in various eukaryotes. PEX14 and PEX13 are peroxins involved in docking cargo-receptor complexes at the peroxisomal membrane, thus aiding in the transport of the cargo into the peroxisomal matrix. Genetic screens have revealed numerous Arabidopsis thaliana peroxins acting in peroxisomal matrix protein import; the viable alleles isolated through these screens are generally partial loss-of-function alleles, whereas null mutations that disrupt delivery of matrix proteins to peroxisomes can confer embryonic lethality. In this study, we used forward and reverse genetics in Arabidopsis to isolate four pex14 alleles. We found that all four alleles conferred reduced PEX14 mRNA levels and displayed physiological and molecular defects suggesting reduced but not abolished peroxisomal matrix protein import. The least severe pex14 allele, pex14-3, accumulated low levels of a C-terminally truncated PEX14 product that retained partial function. Surprisingly, even the severe pex14-2 allele, which lacked detectable PEX14 mRNA and PEX14 protein, was viable, fertile, and displayed residual peroxisome matrix protein import. As pex14 plants matured, import improved. Together, our data indicate that PEX14 facilitates, but is not essential for peroxisomal matrix protein import in plants.Item Transport and Metabolism of the Endogenous Auxin Precursor Indole-3-Butyric Acid(Elsevier, 2011) Strader, Lucia C.; Bartel, BonniePlant growth and morphogenesis depend on the levels and distribution of the plant hormone auxin. Plants tightly regulate cellular levels of the active auxin indole-3-acetic acid (IAA) through synthesis, inactivation, and transport. Although the transporters that move IAA into and out of cells are well characterized and play important roles in development, little is known about the transport of IAA precursors. In this review, we discuss the accumulating evidence suggesting that the IAA precursor indole-3-butyric acid (IBA) is transported independently of the characterized IAA transport machinery along with the recent identification of specific IBA efflux carriers and enzymes suggested to metabolize IBA. These studies have revealed important roles for IBA in maintaining IAA levels and distribution within the plant to support normal development.Item Multiple Facets of Arabidopsis Seedling Development Require Indole-3-Butyric Acid–Derived Auxin(American Society of Plant Biologists, 2011) Strader, Lucia C.; Wheeler, Dorthea L.; Christensen, Sarah E.; Berens, John C.; Cohen, Jerry D.; Rampey, Rebekah A.; Bartel, BonnieLevels of auxin, which regulates both cell division and cell elongation in plant development, are controlled by synthesis, inactivation, transport, and the use of storage forms. However, the specific contributions of various inputs to the active auxin pool are not well understood. One auxin precursor is indole-3-butyric acid (IBA), which undergoes peroxisomal β-oxidation to release free indole-3-acetic acid (IAA). We identified ENOYL-COA HYDRATASE2 (ECH2) as an enzyme required for IBA response. Combining the ech2 mutant with previously identified iba response mutants resulted in enhanced IBA resistance, diverse auxin-related developmental defects, decreased auxin-responsive reporter activity in both untreated and auxin-treated seedlings, and decreased free IAA levels. The decreased auxin levels and responsiveness, along with the associated developmental defects, uncover previously unappreciated roles for IBA-derived IAA during seedling development, establish IBA as an important auxin precursor, and suggest that IBA-to-IAA conversion contributes to the positive feedback that maintains root auxin levels.Item Genetic Dissection of Peroxisome-Associated Matrix Protein Degradation in Arabidopsis thaliana(The Genetics Society of America, 2013) Burkhart, Sarah E.; Lingard, Matthew J.; Bartel, BonniePeroxisomes are organelles that sequester certain metabolic pathways; many of these pathways generate H2O2, which can damage proteins. However, little is known about how damaged or obsolete peroxisomal proteins are degraded. We exploit developmentally timed peroxisomal content remodeling in Arabidopsis thaliana to elucidate peroxisome-associated protein degradation. Isocitrate lyase (ICL) is a peroxisomal glyoxylate cycle enzyme necessary for early seedling development. A few days after germination, photosynthesis begins and ICL is degraded. We previously found that ICL is stabilized when a peroxisome-associated ubiquitin-conjugating enzyme and its membrane anchor are both mutated, suggesting that matrix proteins might exit the peroxisome for ubiquitin-dependent cytosolic degradation. To identify additional components needed for peroxisome-associated matrix protein degradation, we mutagenized a line expressing GFP–ICL, which is degraded similarly to endogenous ICL, and identified persistent GFP-ICLfluorescence (pfl) mutants. We found three pfl mutants that were defective in PEROXIN14(PEX14/At5g62810), which encodes a peroxisomal membrane protein that assists in importing proteins into the peroxisome matrix, indicating that proteins must enter the peroxisome for efficient degradation. One pflmutant was missing the peroxisomal 3-ketoacyl-CoA thiolase encoded by the PEROXISOME DEFECTIVE1 (PED1/At2g33150) gene, suggesting that peroxisomal metabolism influences the rate of matrix protein degradation. Finally, one pfl mutant that displayed normal matrix protein import carried a novel lesion in PEROXIN6 (PEX6/At1g03000), which encodes a peroxisome-tethered ATPase that is involved in recycling matrix protein receptors back to the cytosol. The isolation of pex6-2 as a pfl mutant supports the hypothesis that matrix proteins can exit the peroxisome for cytosolic degradation.Item Peroxisomal Ubiquitin-Protein Ligases Peroxin2 and Peroxin10 Have Distinct But Synergistic Roles in Matrix Protein Import and Peroxin5 Retrotranslocation in Arabidopsis(American Society of Plant Biologists, 2014) Burkhart, Sarah E.; Kao, Yun-Ting; Bartel, BonniePeroxisomal matrix proteins carry peroxisomal targeting signals (PTSs), PTS1 or PTS2, and are imported into the organelle with the assistance of peroxin (PEX) proteins. From a microscopy-based screen to identify Arabidopsis (Arabidopsis thaliana) mutants defective in matrix protein degradation, we isolated unique mutations in PEX2 and PEX10, which encode ubiquitin-protein ligases anchored in the peroxisomal membrane. In yeast (Saccharomyces cerevisiae), PEX2, PEX10, and a third ligase, PEX12, ubiquitinate a peroxisome matrix protein receptor, PEX5, allowing the PEX1 and PEX6 ATP-hydrolyzing enzymes to retrotranslocate PEX5 out of the membrane after cargo delivery. We found that the pex2-1 and pex10-2Arabidopsis mutants exhibited defects in peroxisomal physiology and matrix protein import. Moreover, the pex2-1 pex10-2 double mutant exhibited severely impaired growth and synergistic physiological defects, suggesting that PEX2 and PEX10 function cooperatively in the wild type. The pex2-1 lesion restored the unusually low PEX5 levels in the pex6-1 mutant, implicating PEX2 in PEX5 degradation when retrotranslocation is impaired. PEX5 overexpression altered pex10-2 but not pex2-1 defects, suggesting that PEX10 facilitates PEX5 retrotranslocation from the peroxisomal membrane. Although the pex2-1 pex10-2double mutant displayed severe import defects of both PTS1 and PTS2 proteins into peroxisomes, both pex2-1 and pex10-2 single mutants exhibited clear import defects of PTS1 proteins but apparently normal PTS2 import. A similar PTS1-specific pattern was observed in the pex4-1 ubiquitin-conjugating enzyme mutant. Our results indicate that Arabidopsis PEX2 and PEX10 cooperate to support import of matrix proteins into plant peroxisomes and suggest that some PTS2 import can still occur when PEX5 retrotranslocation is slowed.Item The Transcriptome of an Amphioxus, Asymmetron lucayanum, from the Bahamas: A Window into Chordate Evolution(Oxford University Press, 2014) Yue, Jia-Xing; Yu, Jr-Kai; Putnam, Nicholas H.; Holland, Linda Z.Item Mutation of the Arabidopsis LON2 peroxisomal protease enhances pexophagy(Landes Bioscience, 2014) Bartel, Bonnie; Farmer, Lisa M.; Rinaldi, Mauro A.; Young, Pierce G.; Danan, Charles H.; Burkhart, Sarah E.Peroxisomes are critical organelles housing various, often oxidative, reactions. Pexophagy, the process by which peroxisomes are selectively targeted for destruction via autophagy, is characterized in yeast and mammals but had not been reported in plants. In this article, we describe how the peroxisome-related aberrations of a mutant defective in the LON2 peroxisomal protease are suppressed when autophagy is prevented by mutating any of several key autophagy-related (ATG) genes. Our results reveal that plant peroxisomes can be degraded by selective autophagy and suggest that pexophagy is accelerated when the LON2 protease is disabled.Item Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex Environments(Public Library of Science, 2014) Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; Ansong, Charles; Deatherage Kaiser, Brooke L.; Valovska, Marie-Thérèse; Ristic, Nikola; Yeh, Ping T.; Prakash, Vittal P.; Leiser, Owen P.; Nakhleh, Luay K.; Gibbons, Henry S.; Kreuzer, Helen W.; Shamoo, YousifAdaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes if many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that subtle modulations of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order metabolic selection that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism, and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel environment, which highlights the importance of global resource management as a powerful strategy to adaptation.Item The three-way switch operation of Rac1/RhoA GTPase-based circuit controlling amoeboid-hybrid-mesenchymal transition(Nature Publishing Group, 2014) Huang, Bin; Lu, Mingyang; Jolly, Mohit Kumar; Tsarfaty, Ilan; Onuchic, José Nelson; Ben-Jacob, Eshel; Center for Theoretical Biological PhysicsMetastatic carcinoma cells exhibit at least two different phenotypes of motility and invasion - amoeboid and mesenchymal. This plasticity poses a major clinical challenge for treating metastasis, while its underlying mechanisms remain enigmatic. Transitions between these phenotypes are mediated by the Rac1/RhoA circuit that responds to external signals such as HGF/SF via c-MET pathway. Using detailed modeling of GTPase-based regulation to study the Rac1/RhoA circuit's dynamics, we found that it can operate as a three-way switch. We propose to associate the circuit's three possible states to the amoeboid, mesenchymal and amoeboid/mesenchymal hybrid phenotype. In particular, we investigated the range of existence of, and the transition between, the three states (phenotypes) in response to Grb2 and Gab1 - two downstream adaptors of c-MET. The results help to explain the regulation of metastatic cells by c-MET pathway and hence can contribute to the assessment of possible clinical interventions.Item The physics of bacterial decision making(Frontiers, 2014) Ben-Jacob, Eshel; Lu, Mingyang; Schultz, Daniel; Onuchic, José Nelson; Center for Theoretical Biological PhysicsThe choice that bacteria make between sporulation and competence when subjected to stress provides a prototypical example of collective cell fate determination that is stochastic on the individual cell level, yet predictable (deterministic) on the population level. This collective decision is performed by an elaborated gene network. Considerable effort has been devoted to simplify its complexity by taking physics approaches to untangle the basic functional modules that are integrated to form the complete network: (1) A stochastic switch whose transition probability is controlled by two order parameters—population density and internal/external stress. (2) An adaptable timer whose clock rate is normalized by the same two previous order parameters. (3) Sensing units which measure population density and external stress. (4) A communication module that exchanges information about the cells' internal stress levels. (5) An oscillating gate of the stochastic switch which is regulated by the timer. The unique circuit architecture of the gate allows special dynamics and noise management features. The gate opens a window of opportunity in time for competence transitions, during which the circuit generates oscillations that are translated into a chain of short intervals with high transition probability. In addition, the unique architecture of the gate allows filtering of external noise and robustness against variations in circuit parameters and internal noise. We illustrate that a physics approach can be very valuable in investigating the decision process and in identifying its general principles. We also show that both cell-cell variability and noise have important functional roles in the collectively controlled individual decisions.Item Modeling the Transitions between Collective and Solitary Migration Phenotypes in Cancer Metastasis(Macmillan Publishers Limited, 2015) Huang, Bin; Jolly, Mohit Kumar; Lu, Mingyang; Tsarfaty, Ilan; Ben-Jacob, Eshel; Onuchic, José Nelson; Center for Theoretical Biological PhysicsCellular plasticity during cancer metastasis is a major clinical challenge. Two key cellular plasticity mechanisms —Epithelial-to-Mesenchymal Transition (EMT) and Mesenchymal-to-Amoeboid Transition (MAT) – have been carefully investigated individually, yet a comprehensive understanding of their interconnections remains elusive. Previously, we have modeled the dynamics of the core regulatory circuits for both EMT (miR-200/ZEB/miR-34/SNAIL) and MAT (Rac1/RhoA). We now extend our previous work to study the coupling between these two core circuits by considering the two microRNAs (miR-200 and miR-34) as external signals to the core MAT circuit. We show that this coupled circuit enables four different stable steady states (phenotypes) that correspond to hybrid epithelial/mesenchymal (E/M), mesenchymal (M), amoeboid (A) and hybrid amoeboid/mesenchymal (A/M) phenotypes. Our model recapitulates the metastasis-suppressing role of the microRNAs even in the presence of EMT-inducing signals like Hepatocyte Growth Factor (HGF). It also enables mapping the microRNA levels to the transitions among various cell migration phenotypes. Finally, it offers a mechanistic understanding for the observed phenotypic transitions among different cell migration phenotypes, specifically the Collective-to-Amoeboid Transition (CAT).Item A maximum pseudo-likelihood approach for phylogenetic networks(BioMed Central, 2015) Yu, Yun; Nakhleh, Luay K.Abstract Background Several phylogenomic analyses have recently demonstrated the need to account simultaneously for incomplete lineage sorting (ILS) and hybridization when inferring a species phylogeny. A maximum likelihood approach was introduced recently for inferring species phylogenies in the presence of both processes, and showed very good results. However, computing the likelihood of a model in this case is computationally infeasible except for very small data sets. Results Inspired by recent work on the pseudo-likelihood of species trees based on rooted triples, we introduce the pseudo-likelihood of a phylogenetic network, which, when combined with a search heuristic, provides a statistical method for phylogenetic network inference in the presence of ILS. Unlike trees, networks are not always uniquely encoded by a set of rooted triples. Therefore, even when given sufficient data, the method might converge to a network that is equivalent under rooted triples to the true one, but not the true one itself. The method is computationally efficient and has produced very good results on the data sets we analyzed. The method is implemented in PhyloNet, which is publicly available in open source. Conclusions Maximum pseudo-likelihood allows for inferring species phylogenies in the presence of hybridization and ILS, while scaling to much larger data sets than is currently feasible under full maximum likelihood. The nonuniqueness of phylogenetic networks encoded by a system of rooted triples notwithstanding, the proposed method infers the correct network under certain scenarios, and provides candidates for further exploration under other criteria and/or data in other scenarios.Item Elevated growth temperature decreases levels of the PEX5 peroxisome-targeting signal receptor and ameliorates defects of Arabidopsis mutants with an impaired PEX4 ubiquitin-conjugating enzyme(BioMed Central, 2015) Kao, Yun-Ting; Bartel, BonnieBackground: Peroxisomes house critical metabolic reactions. For example, fatty acid β-oxidation enzymes, which are essential during early seedling development, are peroxisomal. Peroxins (PEX proteins) are needed to bring proteins into peroxisomes. Most matrix proteins are delivered to peroxisomes by PEX5, a receptor that forms transient pores to escort proteins across the peroxisomal membrane. After cargo delivery, a peroxisome-tethered ubiquitin-conjugating enzyme (PEX4) and peroxisomal ubiquitin-protein ligases mono- or polyubiquitinate PEX5 for recycling back to the cytosol or for degradation, respectively. Arabidopsis pex mutants β-oxidize fatty acids inefficiently and therefore fail to germinate or grow less vigorously. These defects can be partially alleviated by providing a fixed carbon source, such as sucrose, in the growth medium. Despite extensive characterization of peroxisome biogenesis in Arabidopsis grown in non-challenged conditions, the effects of environmental stressors on peroxisome function and pex mutant dysfunction are largely unexplored. Results: We surveyed the impact of growth temperature on a panel of pex mutants and found that elevated temperature ameliorated dependence on external sucrose and reduced PEX5 levels in the pex4-1 mutant. Conversely, growth at low temperature exacerbated pex4-1 physiological defects and increased PEX5 levels. Overexpressing PEX5 also worsened pex4-1 defects, implying that PEX5 lingering on the peroxisomal membrane when recycling is impaired impedes peroxisome function. Growth at elevated temperature did not reduce the fraction of membrane-associated PEX5 in pex4-1, suggesting that elevated temperature did not restore PEX4 enzymatic function in the mutant. Moreover, preventing autophagy in pex4-1 did not restore PEX5 levels at high temperature. In contrast, MG132 treatment increased PEX5 levels, implicating the proteasome in degrading PEX5, especially at high temperature. Conclusions: We conclude that growth at elevated temperature increases proteasomal degradation of PEX5 to reduce overall PEX5 levels and ameliorate pex4-1 physiological defects. Our results support the hypothesis that efficient retrotranslocation of PEX5 after cargo delivery is needed not only to make PEX5 available for further rounds of cargo delivery, but also to prevent the peroxisome dysfunction that results from PEX5 lingering in the peroxisomal membrane.Item Operating principles of Notch–Delta–Jagged module of cell–cell communication(IOP Publishing, 2015) Jolly, Mohit Kumar; Boareto, Marcelo; Lu, Mingyang; Onuchic, José Nelson; Clementi, Cecilia; Ben-Jacob, Eshel; Center for Theoretical Biological PhysicsNotch pathway is an evolutionarily conserved cell–cell communication mechanism governing cell-fate during development and tumor progression. It is activated when Notch receptor of one cell binds to either of its ligand—Delta or Jagged—of another cell. Notch–Delta (ND) signaling forms a two-way switch, and two cells interacting via ND signaling adopt different fates—Sender (high ligand, low receptor) and Receiver (low ligand, high receptor). Notch–Delta–Jagged signaling (NDJ) behaves as a three-way switch and enables an additional fate—hybrid Sender/Receiver (S/R) (medium ligand, medium receptor). Here, by extending our framework of NDJ signaling for a two-cell system, we show that higher production rate of Jagged, but not that of Delta, expands the range of parameters for which both cells attain the hybrid S/R state. Conversely, glycosyltransferase Fringe and cis-inhibition reduces this range of conditions, and reduces the relative stability of the hybrid S/R state, thereby promoting cell-fate divergence and consequently lateral inhibition-based patterns. Lastly, soluble Jagged drives the cells to attain the hybrid S/R state, and soluble Delta drives them to be Receivers. We also discuss the critical role of hybrid S/R state in promoting cancer metastasis by enabling collective cell migration and expanding cancer stem cell (CSC) population.Item The relationship between stochastic and deterministic quasi-steady state approximations(Springer, 2015) Kim, Jae Kyoung; Josić, Krešimir; Bennett, Matthew R.Background: The quasi steady-state approximation (QSSA) is frequently used to reduce deterministic models of biochemical networks. The resulting equations provide a simplified description of the network in terms of non-elementary reaction functions (e.g. Hill functions). Such deterministic reductions are frequently a basis for heuristic stochastic models in which non-elementary reaction functions are used to define reaction propensities. Despite their popularity, it remains unclear when such stochastic reductions are valid. It is frequently assumed that the stochastic reduction can be trusted whenever its deterministic counterpart is accurate. However, a number of recent examples show that this is not necessarily the case. Results: Here we explain the origin of these discrepancies, and demonstrate a clear relationship between the accuracy of the deterministic and the stochastic QSSA for examples widely used in biological systems. With an analysis of a two-state promoter model, and numerical simulations for a variety of other models, we find that the stochastic QSSA is accurate whenever its deterministic counterpart provides an accurate approximation over a range of initial conditions which cover the likely fluctuations from the quasi steady-state (QSS). We conjecture that this relationship provides a simple and computationally inexpensive way to test the accuracy of reduced stochastic models using deterministic simulations. Conclusions: The stochastic QSSA is one of the most popular multi-scale stochastic simulation methods. While the use of QSSA, and the resulting non-elementary functions has been justified in the deterministic case, it is not clear when their stochastic counterparts are accurate. In this study, we show how the accuracy of the stochastic QSSA can be tested using their deterministic counterparts providing a concrete method to test when non-elementary rate functions can be used in stochastic simulations.Item Keeping the rhythm: light/dark cycles during postharvest storage preserve the tissue integrity and nutritional content of leafy plants(BioMed Central, 2015) Liu, John D.; Goodspeed, Danielle; Sheng, Zhengji; Li, Baohua; Yang, Yiran; Kliebenstein, Daniel J.; Braam, JanetBackground: The modular body structure of plants enables detached plant organs, such as postharvest fruits and vegetables, to maintain active responsiveness to environmental stimuli, including daily cycles of light and darkness. Twenty-four hour light/darkness cycles entrain plant circadian clock rhythms, which provide advantage to plants. Here, we tested whether green leafy vegetables gain longevity advantage by being stored under light/dark cycles designed to maintain biological rhythms. Results: Light/dark cycles during postharvest storage improved several aspects of plant tissue performance comparable to that provided by refrigeration. Tissue integrity, green coloration, and chlorophyll content were generally enhanced by cycling of light and darkness compared to constant light or darkness during storage. In addition, the levels of the phytonutrient glucosinolates in kale and cabbage remained at higher levels over time when the leaf tissue was stored under light/dark cycles. Conclusions: Maintenance of the daily cycling of light and dark periods during postharvest storage may slow the decline of plant tissues, such as green leafy vegetables, improving not only appearance but also the health value of the crops through the maintenance of chlorophyll and phytochemical content after harvest.Item Low algal diversity systems are a promising method for biodiesel production in wastewater fed open reactors(The Korean Society of Phycology, 2015) Bhattacharjee, Meenakshi; Siemann, EvanPlanktivorous fish which limit zooplankton grazing have been predicted to increase algal biodiesel production in wastewater fed open reactors. In addition, tanks with higher algal diversity have been predicted to be more stable, more productive, and to more fully remove nutrients from wastewater. To test these predictions, we conducted a 14-week exᆳperiment in Houston, TX using twelve 2,270-L open tanks continuously supplied with wastewater. Tanks received algal composition (monocultures or diverse assemblage) and trophic (fish or no fish) treatments in a full-factorial design. Monocultures produced more algal and fatty acid methyl ester (FAME) mass than diverse tanks. More than 80% of lipids were converted to FAME indicating potentially high production for conversion to biodiesel (up to 0.9 T ha-1 y-1). Prolific algal growth lowered temperature and levels of total dissolved solids in the tanks and increased pH and dissolved oxygen compared to supply water. Algae in the tanks removed 91% of nitrate-N and 53% of phosphorus from wastewater. Monoᆳcultures were not invaded by other algal species. Fish did not affect any variables. Our results indicated that algae can be grown in open tank bioreactors using wastewater as a nutrient source. The stable productivity of monocultures suggests that this may be a viable production method to procure algal biomass for biodiesel production.Item Deletion of liaR Reverses Daptomycin Resistance in Enterococcus faecium Independent of the Genetic Background(American Society for Microbiology, 2015) Panesso, Diana; Reyes, Jinnethe; Gaston, Elizabeth; Deal, Morgan; Londoño, Alejandra; Nigo, Masayuki; Munita, Jose M.; Miller, William R.; Shamoo, Yousif; Tran, Truc T.; Arias, Cesar A.We have shown previously that changes in LiaFSR, a three-component regulatory system predicted to orchestrate the cell membrane stress response, are important mediators of daptomycin (DAP) resistance in enterococci. Indeed, deletion of the gene encoding the response regulator LiaR in a clinical strain of Enterococcus faecalis reversed DAP resistance (DAP-R) and produced a strain hypersusceptible to antimicrobial peptides. Since LiaFSR is conserved in Enterococcus faecium, we investigated the role of LiaR in a variety of clinical E. faecium strains representing the most common DAP-R genetic backgrounds. Deletion of liaR in DAP-R E. faecium R446F (DAP MIC of 16 μg/ml) and R497F (MIC of 24 μg/ml; harboring changes in LiaRS) strains fully reversed resistance (DAP MICs decreasing to 0.25 and 0.094 μg/ml, respectively). Moreover, DAP at concentrations of 13 μg/ml (achieved with human doses of 12 mg/kg body weight) retained bactericidal activity against the mutants. Furthermore, the liaR deletion derivatives of these two DAP-R strains exhibited increased binding of boron-dipyrromethene difluoride (BODIPY)-daptomycin, suggesting that high-level DAP-R mediated by LiaR in E. faecium involves repulsion of the calcium-DAP complex from the cell surface. In DAP-tolerant strains HOU503F and HOU515F (DAP MICs within the susceptible range but bacteria not killed by DAP concentrations of 5× the MIC), deletion of liaRnot only markedly decreased the DAP MICs (0.064 and 0.047 μg/ml, respectively) but also restored the bactericidal activity of DAP at concentrations as low as 4 μg/ml (achieved with human doses of 4 mg/kg). Our results suggest that LiaR plays a relevant role in the enterococcal cell membrane adaptive response to antimicrobial peptides independent of the genetic background and emerges as an attractive target to restore the activity of DAP against multidrug-resistant strains.Item An automated system for quantitative analysis of Drosophila larval locomotion(BioMed Central Lt, 2015) Aleman-Meza, Boanerges; Jung, Sang-Kyu; Zhong, WeiweiBackground: Drosophila larvae have been used as a model to study to genetic and cellular circuitries modulating behaviors. One of the challenges in behavioral study is the quantification of complex phenotypes such as locomotive behaviors. Experimental capability can be greatly enhanced by an automatic single-animal tracker that records an animal at a high resolution for an extended period, and analyzes multiple behavioral parameters. Results: Here we present MaggotTracker, a single-animal tracking system for Drosophila larval locomotion analysis. This system controls the motorized microscope stage while taking a video, so that the animal remains in the viewing center. It then reduces the animal to 13 evenly distributed points along the midline, and computes over 20 parameters evaluating the shape, peristalsis movement, stamina, and track of the animal. To demonstrate its utility, we applied MaggotTracker to analyze both wild-type and mutant animals to identify factors affecting locomotive behaviors. Each animal was tracked for four minutes. Our analysis on Canton-S third-instar larvae revealed that the distance an animal travelled was correlated to its striding speed rather than the percentage of time the animal spent striding, and that the striding speed was correlated to both the distance and the duration of one stride. Sexual dimorphism was observed in body length but not in locomotive parameters such as speed. Locomotive parameters were affected by animal developmental stage and the crawling surface. No significant changes in movement speed were detected in mutants of circadian genes such as period (per), timeout, and timeless (tim). The MaggotTracker analysis showed that ether a go-go (eag), Shaker (Sh), slowpoke (slo), and dunce (dnc) mutant larvae had severe phenotypes in multiple locomotive parameters such as stride distance and speed, consistent with their function in neuromuscular junctions. Further, the phenotypic patterns of the K+ channel genes eag, Sh and slo are highly similar. Conclusions: These results showed that MaggotTracker is an efficient tool for automatic phenotyping. The MaggotTracker software as well as the data presented here can be downloaded from our open-access site www.WormLoco.org/Mag