Biochemistry and Cell Biology
Permanent URI for this community
Browse
Browsing Biochemistry and Cell Biology by Issue Date
Now showing 1 - 20 of 118
Results Per Page
Sort Options
Item Differences in transcription between free-living and CO2-activated third-stage larvae ofᅠHaemonchus contortus(BioMed Central, 2010) Cantacessi, Cinzia; Campbell, Bronwyn E.; Young, Neil D.; Jex, Aaron R.; Hall, Ross S.; Presidente, Paul J.A.; Zawadzki, Jodi L.; Zhong, Weiwei; Aleman-Meza, Boanerges; Loukas, Alex; Sternberg, Paul W.; Gasser, Robin B.Background: The disease caused by Haemonchus contortus, a blood-feeding nematode of small ruminants, is of major economic importance worldwide. The infective third-stage larva (L3) of this gastric nematode is enclosed in a cuticle (sheath) and, once ingested with herbage by the host, undergoes an exsheathment process that marks the transition from the free-living (L3) to the parasitic (xL3) stage. This study explored changes in gene transcription associated with this transition and predicted, based on comparative analysis, functional roles for key transcripts in the metabolic pathways linked to larval development. Results: Totals of 101,305 (L3) and 105,553 (xL3) expressed sequence tags (ESTs) were determined using 454 sequencing technology, and then assembled and annotated; the most abundant transcripts encoded transthyretin-like, calcium-binding EF-hand, NAD(P)-binding and nucleotide-binding proteins as well as homologues of Ancylostoma -secreted proteins (ASPs). Using an in silico -subtractive analysis, 560 and 685 sequences were shown to be uniquely represented in the L3 and xL3 stages, respectively; the transcripts encoded ribosomal proteins, collagens and elongation factors (in L3), and mainly peptidases and other enzymes of amino acid catabolism (in xL3). Caenorhabditis elegans orthologues of transcripts that were uniquely transcribed in each L3 and xL3 were predicted to interact with a total of 535 other genes, all of which were involved in embryonic development. Conclusion: The present study indicated that some key transcriptional alterations taking place during the transition from the L3 to the xL3 stage of H. contortus involve genes predicted to be linked to the development of neuronal tissue (L3 and xL3), formation of the cuticle (L3) and digestion of host haemoglobin (xL3). Future efforts using next-generation sequencing and bioinformatic technologies should provide the efficiency and depth of coverage required for the determination of the complete transcriptomes of different developmental stages and/or tissues of H. contortus as well as the genome of this important parasitic nematode. Such advances should lead to a significantly improved understanding of the molecular biology of H. contortus and, from an applied perspective, to novel methods of intervention.Item The MUC1 Ectodomain: A Novel and Efficient Target for Gold Nanoparticle Clustering and Vapor Nanobubble Generation(Ivyspring International Publisher, 2012) Danysh, Brian P.; Constantinou, Pamela E.; Lukianova-Hleb, Ekaterina Y.; Lapotko, Dmitri O.; Carson, Daniel D.MUC1 is a large, heavily glycosylated transmembrane glycoprotein that is proposed to create a protective microenvironment in many adenocarcinomas. Here we compare MUC1 and the well studied cell surface receptor target, EGFR, as gold nanoparticle (AuNP) targets and their subsequent vapor nanobubble generation efficacy in the human epithelial cell line, HES. Although EGFR and MUC1 were both highly expressed in these cells, TEM and confocal images revealed MUC1 as a superior target for nanoparticle intracellular accumulation and clustering. The MUC1-targeted AuNP intracellular clusters also generated significantly larger vapor nanobubbles. Our results demonstrate the promising opportunities MUC1 offers to improve the efficacy of targeted nanoparticle based approaches.Item Distinct Roles for Neuropilin1 and Neuropilin2 during Mouse Corneal Innervation(Public Library of Science, 2012) McKenna, Chelsey C.; Munjaal, Ravi P.; Lwigale, Peter Y.Trigeminal sensory innervation of the cornea is critical for protection and synthesis of neuropeptides required for normal vision. Little is known about axon guidance during mammalian corneal innervation. In contrast to the chick where a pericorneal nerve ring forms via Npn/Sema signaling, mouse corneal axons project directly into the presumptive cornea without initial formation of an analogous nerve ring. Here we show that during development of the mouse cornea, Npn1 is strongly expressed by the trigeminal ganglion whereas Npn2 is expressed at low levels. At the same time Sema3A and Sema3F are expressed in distinct patterns in the ocular tissues. Npn1sema−/− mutant corneas become precociously and aberrantly innervated by nerve bundles that project further into the corneal stroma. In contrast, stromal innervation was not affected in Npn2−/− mutants. The corneal epithelium was prematurely innervated in both Npn1sema−/− and Npn2−/− mutants. These defects were exacerbated in Npn1sema−/−;Npn2−/− double mutants, which in addition showed ectopic innervation of the region between the optic cup and lens vesicle. Collectively, our data show that Sema3A/Npn1 and Sema3F/Npn2 signaling play distinct roles and both are required for proper innervation of the mouse cornea.Item Determination of Ligand Pathways in Globins: Apolar Tunnels Versus Polar Gates(The American Society for Biochemistry and Molecular Biology, Inc., 2012) Salter, Mallory D.; Blouin, George C.; Soman, Jayashree; Singleton, Eileen Willey; Dewilde, Sylvia; Moens, Luc; Pesce, Alessandra; Nardini, Marco; Bolognesi, Martino; Olson, John S.Background: O2 pathways in animal hemoglobins and myoglobins are controversial. Results: Ligands enter and exit sperm whale Mb and Cerebratulus lacteus Hb by completely different pathways. Conclusion: Rational mutagenesis mapping can identify ligand migration pathways and provides experimental benchmarks for testing molecular dynamics simulations. Significance: Globins can use either a polar gate or an apolar tunnel for ligand entry.Item Small changes in enzyme function can lead to surprisingly large fitness effects during adaptive evolution of antibiotic resistance(National Academy of Sciences, 2012) Walkiewicz, Katarzyna; Cardenas, Andres S.Benitez; Sun, Christine; Bacorn, Colin; Saxer, Gerda; Shamoo, YousifIn principle, evolutionary outcomes could be largely predicted if all of the relevant physicochemical variants of a particular protein function under selection were known and integrated into an appropriate physiological model. We have tested this principle by generating a family of variants of the tetracycline resistance protein TetX2 and identified the physicochemical properties most correlated with organismal fitness. Surprisingly, small changes in the Km(MCN), less than twofold, were sufficient to produce highly successful adaptive mutants over clinically relevant drug concentrations. We then built a quantitative model directly relating the in vitro physicochemical properties of the mutant enzymes to the growth rates of bacteria carrying a single chromosomal copy of the tet(X2) variants over a wide range of minocycline (MCN) concentrations. Importantly, this model allows the prediction of enzymatic properties directly from cellular growth rates as well as the physicochemical-fitness landscape of TetX2. Using experimental evolution and deep sequencing to monitor the allelic frequencies of the seven most biochemically efficient TetX2 mutants in 10 independently evolving populations, we showed that the model correctly predicted the success of the two most beneficial variants tet(X2)T280A and tet(X2)N371I. The structure of the most efficient variant, TetX2T280A, in complex with MCN at 2.7 Å resolution suggests an indirect effect on enzyme kinetics. Taken together, these findings support an important role for readily accessible small steps in protein evolution that can, in turn, greatly increase the fitness of an organism during natural selection.Item Plasmonic Nanobubbles Rapidly Detect and Destroy Drug-Resistant Tumors(Ivyspring International Publisher, 2012) Lukianova-Hleb, Ekaterina Y.; Ren, Xiaoyang; Townley, Debra; Wu, Xiangwei; Kupferman, Michael E.The resistance of residual cancer cells after oncological resection to adjuvant chemoradiotherapies results in both high recurrence rates and high non-specific tissue toxicity, thus preventing the successful treatment of such cancers as head and neck squamous cell carcinoma (HNSCC). The patients' survival rate and quality of life therefore depend upon the efficacy, selectivity and low non-specific toxicity of the adjuvant treatment. We report a novel, theranostic in vivo technology that unites both the acoustic diagnostics and guided intracellular delivery of anti-tumor drug (liposome-encapsulated doxorubicin, Doxil) in one rapid process, namely a pulsed laser-activated plasmonic nanobubble (PNB). HNSCC-bearing mice were treated with gold nanoparticle conjugates, Doxil, and single near-infrared laser pulses of low energy. Tumor-specific clusters of gold nanoparticles (solid gold spheres) converted the optical pulses into localized PNBs. The acoustic signals of the PNB detected the tumor with high specificity and sensitivity. The mechanical impact of the PNB, co-localized with Doxil liposomes, selectively ejected the drug into the cytoplasm of cancer cells. Cancer cell-specific generation of PNBs and their intracellular co-localization with Doxil improved the in vivo therapeutic efficacy from 5-7% for administration of only Doxil or PNBs alone to 90% thus demonstrating the synergistic therapeutic effect of the PNB-based intracellular drug release. This mechanism also reduced the non-specific toxicity of Doxil below a detectable level and the treatment time to less than one minute. Thus PNBs combine highly sensitive diagnosis, overcome drug resistance and minimize non-specific toxicity in a single rapid theranostic procedure for intra-operative treatment.Item Munc18b is an essential gene in mice whose expression is limiting for secretion by airway epithelial and mast cells(Portland Press Limited, 2012) Kim, Kyubo; Petrova, Youlia M.; Scott, Brenton L.; Nigam, Rupesh; Agrawal, Anurag; Evans, Christopher M.; Azzegagh, Zoulikha; Gomez, Alejandra; Rodarte, Elsa M.; Olkkonen, Vesa M.; Bagirzadeh, Rustam; Piccotti, Lucia; Ren, Binhui; Yoon, Joo-Heon; McNew, James A.; Adachi, Roberto; Tuvim, Michael J.; Dickey, Burton F.; Cystic Fibrosis Foundation; National Institutes of HealthAirway mucin secretion and MC (mast cell) degranulation must be tightly controlled for homoeostasis of the lungs and immune system respectively. We found the exocytic protein Munc18b to be highly expressed in mouse airway epithelial cells and MCs, and localized to the apical pole of airway secretory cells. To address its functions, we created a mouse with a severely hypomorphic Munc18b allele such that protein expression in heterozygotes was reduced by∼50%. Homozygous mutant mice were not viable, but heterozygotes showed a ∼50% reduction in stimulated release of mucin from epithelial cells and granule contents from MCs. The defect in MCs affected only regulated secretion and not constitutive or transporter-mediated secretion. The severity of passive cutaneous anaphylaxiswas also reduced by ∼50%, showing that reduction of Munc18b expression results in an attenuation of physiological responses dependent on MC degranulation. The Munc18b promoter is controlled by INR (initiator), Sp1 (specificity protein 1), Ets, CRE (cAMP-response element), GRE (glucocorticoid-response element), GATA and E-box elements in airway epithelial cells; however, protein levels did not change during mucous metaplasia induced by allergic inflammation. Taken together, the results of the present study identifyMunc18b as an essential gene that is a limiting component of the exocytic machinery of epithelial cells and MCs.Item Biochemical and Structural Evidence in Support of a Coherent Model for the Formation of the Double-Helical Influenza A Virus Ribonucleoprotein(American Society for Microbiology, 2012) Ye, Qiaozhen; Guu, Tom S.Y.; Mata, Dougslas A.; Kuo, Rei-Lin; Smith, Bartram; Krug, Robert M.; Tao, Yizhi JaneInfluenza A virions contain eight ribonucleoproteins (RNPs), each comprised of a negative-strand viral RNA, the viral polymerase, and multiple nucleoproteins (NPs) that coat the viral RNA. NP oligomerization along the viral RNA is mediated largely by a 28-amino-acid tail loop. Influenza viral RNPs, which serve as the templates for viral RNA synthesis in the nuclei of infected cells, are not linear but rather are organized in hairpin-like double-helical structures. Here we present results that strongly support a coherent model for the assembly of the double-helical influenza virus RNP structure. First, we show that NP self-associates much more weakly in the absence of RNA than in its presence, indicating that oligomerization is very limited in the cytoplasm. We also show that once NP has oligomerized, it can dissociate in the absence of bound RNA, but only at a very slow rate, indicating that the NP scaffold remains intact when viral RNA dissociates from NPs to interact with the polymerase during viral RNA synthesis. In addition, we identify a previously unknown NP-NP interface that is likely responsible for organizing the double-helical viral RNP structure. This identification stemmed from our observation that NP lacking the oligomerization tail loop forms monomers and dimers. We determined the crystal structure of this NP dimer, which reveals this new NP-NP interface. Mutation of residues that disrupt this dimer interface does not affect oligomerization of NPs containing the tail loop but does inactivate the ability of NPs containing the tail loop to support viral RNA synthesis in minigenome assays.Item Alpha-hemoglobin stabilizing protein (AHSP) markedly decreases the redox potential and reactivity of alpha subunits of human HbA with hydrogen peroxide(The American Society for Biochemistry and Molecular Biology, Inc., 2012) Mollan, Todd L.; Banerjee, Sambuddha; Wu, Gang; Siburt, Claire J.Parker; Tsai, Ah-Lim; Olson, John S.; Weiss, Mitchell J.; Crumbliss, Alvin L.; Alayash, Abdu I.Background: AHSP modifies redox properties of bound α subunits. Results: Isolated hemoglobin subunits exhibit significantly different redox properties compared to HbA. A significant decrease in the reduction potential of α subunits bound to AHSP results in preferential binding of ferric α. Conclusion: AHSP:α subunit complexes do not participate in ferric-ferryl heme redox cycling. Significance: AHSP binding to α subunits inhibits subunit pseudoperoxidase activity.Item Hyaluronan (HA) Interacting Proteins RHAMM and Hyaluronidase Impact Prostate Cancer Cell Behavior and Invadopodia Formation in 3D HA-Based Hydrogels(Public Library of Science, 2012) Gurski, Lisa A.; Xu, Xian; Labrada, Lyana N.; Nguyen, Ngoc T.; Xiao, Longxi; van Golen, Kenneth L.; Jia, Xinqiao; Farach-Carson, Mary C.To study the individual functions of hyaluronan interacting proteins in prostate cancer (PCa) motility through connective tissues, we developed a novel three-dimensional (3D) hyaluronic acid (HA) hydrogel assay that provides a flexible, quantifiable, and physiologically relevant alternative to current methods. Invasion in this system reflects the prevalence of HA in connective tissues and its role in the promotion of cancer cell motility and tissue invasion, making the system ideal to study invasion through bone marrow or other HA-rich connective tissues. The bio-compatible cross-linking process we used allows for direct encapsulation of cancer cells within the gel where they adopt a distinct, cluster-like morphology. Metastatic PCa cells in these hydrogels develop fingerlike structures, “invadopodia”, consistent with their invasive properties. The number of invadopodia, as well as cluster size, shape, and convergence, can provide a quantifiable measure of invasive potential. Among candidate hyaluronan interacting proteins that could be responsible for the behavior we observed, we found that culture in the HA hydrogel triggers invasive PCa cells to differentially express and localize receptor for hyaluronan mediated motility (RHAMM)/CD168 which, in the absence of CD44, appears to contribute to PCa motility and invasion by interacting with the HA hydrogel components. PCa cell invasion through the HA hydrogel also was found to depend on the activity of hyaluronidases. Studies shown here reveal that while hyaluronidase activity is necessary for invadopodia and inter-connecting cluster formation, activity alone is not sufficient for acquisition of invasiveness to occur. We therefore suggest that development of invasive behavior in 3D HA-based systems requires development of additional cellular features, such as activation of motility associated pathways that regulate formation of invadopodia. Thus, we report development of a 3D system amenable to dissection of biological processes associated with cancer cell motility through HA-rich connective tissues.Item Stable Maintenance of Multiple Plasmids in E. coli Using a Single Selective Marker(American Chemical Society, 2012) Schmidt, Calvin M.; Shis, David L.; Nguyen-Huu, Truong D.; Bennett, Matthew R.; Institute of Biosciences and BioengineeringPlasmid-based genetic systems in Escherichia coli are a staple of synthetic biology. However, the use of plasmids imposes limitations on the size of synthetic gene circuits and the ease with which they can be placed into bacterial hosts. For instance, unique selective markers must be used for each plasmid to ensure their maintenance in the host. These selective markers are most often genes encoding resistance to antibiotics such as ampicillin or kanamycin. However, the simultaneous use of multiple antibiotics to retain different plasmids can place undue stress on the host and increase the cost of growth media. To address this problem, we have developed a method for stably transforming three different plasmids in E. coli using a single antibiotic selective marker. To do this, we first examined two different systems with which two plasmids may be maintained. These systems make use of either T7 RNA polymerase-specific regulation of the resistance gene or split antibiotic resistance enzymes encoded on separate plasmids. Finally, we combined the two methods to create a system with which three plasmids can be transformed and stably maintained using a single selective marker. This work shows that large-scale plasmid-based synthetic gene circuits need not be limited by the use of multiple antibiotic resistance genes.Item Quantitative Analysis of α-Synuclein Solubility in Living Cells Using Split GFP Complementation(Public Library of Science, 2012) Kothawala, Ahmed; Kilpatrick, Kiri; Novoa, Jose Andres; Segatori, LauraPresently incurable, Parkinson's disease (PD) is the most common neurodegenerative movement disorder and affects 1% of the population over 60 years of age. The hallmarks of PD pathogenesis are the loss of dopaminergic neurons in the substantia nigra pars compacta, and the occurrence of proteinaceous cytoplasmic inclusions (Lewy bodies) in surviving neurons. Lewy bodies are mainly composed of the pre-synaptic protein alpha-synuclein (αsyn), an intrinsically unstructured, misfolding-prone protein with high propensity to aggregate. Quantifying the pool of soluble αsyn and monitoring αsyn aggregation in living cells is fundamental to study the molecular mechanisms of αsyn-induced cytotoxicity and develop therapeutic strategies to prevent αsyn aggregation. In this study, we report the use of a split GFP complementation assay to quantify αsyn solubility. Particularly, we investigated a series of naturally occurring and rationally designed αsyn variants and showed that this method can be used to study how αsyn sequence specificity affects its solubility. Furthermore, we demonstrated the utility of this assay to explore the influence of the cellular folding network on αsyn solubility. The results presented underscore the utility of the split GFP assay to quantify αsyn solubility in living cells.Item A secreted protein is an endogenous chemorepellant in Dictyostelium discoideum(National Academy of Sciences, 2012) Phillips, Jonathan E.; Gomer, Richard H.; National Institutes of HealthChemorepellants may play multiple roles in physiological and pathological processes.However, few endogenous chemorepellants have been identified, and how they function is unclear. We found that the autocrine signal AprA, which is produced by growing Dictyostelium discoideum cells and inhibits their proliferation, also functions as a chemorepellant.Wild-type cells at the edge of a colony show directed movement outward from the colony, whereas cells lacking AprA do not. Cells show directed movement away from a source of recombinant AprA and dialyzed conditioned media from wild-type cells, but not dialyzed conditionedmedia fromaprA− cells. The secreted protein CfaD, the G protein Gα8, and the kinase QkgA are necessary for the chemorepellant activity of AprA as well as its proliferation-inhibiting activity, whereas the putative transcription factor BzpN is dispensable for the chemorepellant activity of AprA but necessary for inhibition of proliferation. Phospholipase C and PI3 kinases 1 and 2, which are necessary for the activity of at least one other chemorepellant in Dictyostelium, are not necessary for recombinant AprA chemorepellant activity. Starved cells are not repelled by recombinant AprA, suggesting that aggregation-phase cells are not sensitive to the chemorepellant effect. Cell tracking indicates that AprA affects the directional bias of cell movement, but not cell velocity or the persistence of cell movement. Together, our data indicate that the endogenous signal AprA acts as an autocrine chemorepellant for Dictyostelium cells.Item Random Insertion of mCherry Into VP3 Domain of Adeno- associated Virus Yields Fluorescent Capsids With no Loss of Infectivity(American Society of Gene & Cell Therapy, 2012) Judd, Justin; Wei, Fang; Nguyen, Peter Q.; Tartaglia, Lawrence J.; Agbandje-McKenna, Mavis; Silberg, Jonathan J.; Suh, JunghaeAdeno-associated virus (AAV)-derived vectors are promising gene delivery systems, and a number of design strategies have been pursued to improve their performance. For example, genetic insertion of proteins into the capsid may be used to achieve vector retargeting, reduced immunogenicity, or to track vector transport. Unfortunately, rational approaches to genetic insertion have experienced limited success due to the unpredictable context-dependent nature of protein folding and the complexity of the capsid's macroassembly. We report the construction and use of a frame-enriched DNase-based random insertion library based on AAV2 cap, called pAAV2_RaPID (Random Peptide Insertion by DNase). The fluorescent mCherry protein was inserted randomly throughout the AAV2 capsid and the library was selected for fluorescent and infectious variants. A capsid site was identified in VP3 that can tolerate the large protein insertion. In contrast to previous efforts to incorporate fluorescent proteins into the AAV2 capsid, the isolated mCherry mutant maintains native infectivity while displaying robust fluorescence. Collectively, these results demonstrate that the pAAV2_RaPID platform library can be used to create fully infectious AAV vectors carrying large functional protein domains on the capsid.Item Improved Cellular Specificity of Plasmonic Nanobubbles versus Nanoparticles in Heterogeneous Cell Systems(Public Library of Science, 2012) Lukianova-Hleb, Ekaterina Y.; Ren, Xiaoyang; Constantinou, Pamela E.; Danysh, Brian P.; Shenefelt, Derek L.; Carson, Daniel D.; Farach-Carson, Mary C.; Kulchitsky, Vladimir A.; Wu, Xiangwei; Wagner, Daniel S.; Lapotko, Dmitri O.The limited specificity of nanoparticle (NP) uptake by target cells associated with a disease is one of the principal challenges of nanomedicine. Using the threshold mechanism of plasmonic nanobubble (PNB) generation and enhanced accumulation and clustering of gold nanoparticles in target cells, we increased the specificity of PNB generation and detection in target versus non-target cells by more than one order of magnitude compared to the specificity of NP uptake by the same cells. This improved cellular specificity of PNBs was demonstrated in six different cell models representing diverse molecular targets such as epidermal growth factor receptor, CD3 receptor, prostate specific membrane antigen and mucin molecule MUC1. Thus PNBs may be a universal method and nano-agent that overcome the problem of non-specific uptake of NPs by non-target cells and improve the specificity of NP-based diagnostics, therapeutics and theranostics at the cell level.Item A gain-of-function mutation in IAA16 confers reduced responses to auxin and abscisic acid and impedes plant growth and fertility(Springer, 2012) Rinaldi, Mauro A.; Liu, James; Enders, Tara A.; Bartel, Bonnie; Strader, Lucia C.Auxin regulates many aspects of plant development, in part, through degradation of the Aux/IAA family of transcriptional repressors. Consequently, stabilizing mutations in several Aux/IAA proteins confer reduced auxin responsiveness. However, of the 29 apparent Aux/IAA proteins in Arabidopsis thaliana, fewer than half have roles established through mutant analysis. We identified iaa16-1, a dominant gain-of-function mutation in IAA16 (At3g04730), in a novel screen for reduced root responsiveness to abscisic acid. The iaa16-1 mutation also confers dramatically reduced auxin responses in a variety of assays, markedly restricts growth of adult plants, and abolishes fertility when homozygous. We compared iaa16-1 phenotypes with those of dominant mutants defective in the closely related IAA7/AXR2, IAA14/SLR, and IAA17/AXR3, along with the more distantly related IAA28, and found overlapping but distinct patterns of developmental defects. The identification and characterization of iaa16-1 provides a fuller understanding of the IAA7/IAA14/IAA16/IAA17 clade of Aux/IAA proteins and the diverse roles of these repressors in hormone response and plant development.Item Recreating the tumor microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids(Elsevier, 2012) Xu, Xian; Gurski, Lisa A.; Zhang, Chu; Harrington, Daniel Anton; Farach-Carson, Mary C.; Jia, XinqiaoCancer cells cultured in physiologically relevant, three-dimensional (3D) matrices can recapture many essential features of native tumor tissues. In this study, a hyaluronic acid (HA)-based bilayer hydrogel system that not only supports the tumoroid formation from LNCaP prostate cancer (PCa) cells, but also simulates their reciprocal interactions with the tumor-associated stroma was developed and characterized. HA hydrogels were prepared by mixing solutions of HA precursors functionalized with acrylate groups (HA-AC) and reactive thiols (HA-SH) under physiological conditions. The resultant viscoelastic gels have an average elastic modulus of 234 ± 30 Pa and can be degraded readily by hyaluronidase. The orthogonal and cytocompatible nature of the crosslinking chemistry permits facile incorporation of cytokine-releasing particles and PCa cells. In our bilayer hydrogel construct, the top layer contains heparin (HP)-decorated, HA-based hydrogel particles (HGPs) capable of releasing heparin-binding epidermal growth factor-like growth factor (HB-EGF) in a sustained manner at a rate of 2.5 wt%/day cumulatively. LNCaP cells embedded in the bottom layer receive the growth factor signals from the top, and in response form enlarging tumoroids with an average diameter of 85 μm by day 7. Cells in 3D hydrogels assemble into spherical tumoroids, form close cellular contacts through E-cadherin, and show cortical organization of F-actin, whereas those plated as 2D monolayers adopt a spread-out morphology. Compared to cells cultured on 2D, the engineered tumoroids significantly increased the expression of two pro-angiogenic factors, vascular endothelial growth factor-165 (VEGF(165)) and interleukin-8 (IL-8), both at mRNA and protein levels. Overall, the HA model system provides a useful platform for the study of tumor cell responses to growth factors and for screening of anticancer drugs targeting these pathways.Item A role for the root cap in root branching revealed by the non-auxin probe naxillin(Nature America, Inc., 2012) De Rybel, Bert; Audenaert, Dominique; Xuan, Wei; Overvoorde, Paul; Strader, Lucia C.; Kepinski, Stefan; Hoye, Rebecca; Brisbois, Ronald; Parizot, Boris; Vanneste, Steffan; Liu, Xing; Gilday, Alison; Graham, Ian A.; Nguyen, Long; Jansen, Leentje; Njo, Maria Fransiska; Inze, Dirk; Bartel, Bonnie; Beeckman, TomThe acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture.Item Structure of androcam supports specialized interactions with myosin VI(National Academy of Sciences, 2012) Joshi, Mehul K.; Moran, Sean; Beckingham, Kathleen M.; MacKenzie, Kevin R.Androcam replaces calmodulin as a tissue-specific myosin VI light chain on the actin cones that mediate D. melanogaster spermatid individualization. We show that the androcam structure and its binding to the myosin VI structural (Insert 2) and regulatory (IQ) light chain sites are distinct from those of calmodulin and provide a basis for specialized myosin VI function. The androcam N lobe noncanonically binds a single Ca2þ and is locked in a “closed” conformation, causing androcam to contact the Insert 2 site with its C lobe only. Androcam replacing calmodulin at Insert 2 will increase myosin VI lever arm flexibility, which may favor the compact monomeric form of myosin VI that functions on the actin cones by facilitating the collapse of the C-terminal region onto the motor domain. The tethered androcam N lobe could stabilize the monomer through contacts with C-terminal portions of the motor or recruit other components to the actin cones. Androcam binds the IQ site at all calcium levels, constitutively mimicking a conformation adopted by calmodulin only at intermediate calcium levels. Thus, androcam replacing calmodulin at IQ will abolish a Ca2þ-regulated, calmodulin-mediated myosin VI structural change. We propose that the N lobe prevents androcam from interfering with other calmodulin- mediated Ca2þ signaling events. We discuss how gene duplication and mutations that selectively stabilize one of the many conformations available to calmodulin support the molecular evolution of structurally and functionally distinct calmodulin-like proteins.Item Cell-specific transmembrane injection of molecular cargo with gold nanoparticle-generated transient plasmonic nanobubbles(Elsevier, 2012) Lukianova-Hleb, Ekaterina Y.; Wagner, Daniel S.; Brenner, Malcolm K.; Lapotko, Dmitri O.Optimal cell therapies require efficient, selective and rapid delivery of molecular cargo into target cells without compromising their viability. Achieving these goals exᅠvivo in bulk heterogeneous multi-cell systems such as human grafts is impeded by low selectivity and speed of cargo delivery and by significant damage to target and non-target cells. We have developed a cell level approach for selective and guided transmembrane injection of extracellular cargo into specific target cells using transient plasmonic nanobubbles (PNB) as cell-specific nano-injectors. As a technical platform for this method we developed a laser flow cell processing system. The PNB injection method and flow system were tested in heterogeneous cell suspensions of target and non-target cells for delivery of Dextran-FITC dye into squamous cell carcinoma HN31 cells and transfection of human T-cells with a green fluorescent protein-encoding plasmid. In both models the method demonstrated single cell type selectivity, high efficacy of delivery (96% both for HN31 cells T-cells), speed of delivery (nanoseconds) and viability of treated target cells (96% for HN31 cells and 75% for T-cells). The PNB injection method may therefore be beneficial for real time processing of human grafts without removal of physiologically important cells.