Browsing by Author "Zhu, Ye"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Identification of Novel Short BaTiO3-Binding/Nucleating Peptides for Phage-Templated in Situ Synthesis of BaTiO3 Polycrystalline Nanowires at Room Temperature(American Chemical Society, 2016) Li, Yan; Cao, Binrui; Yang, Mingying; Zhu, Ye; Suh, Junghae; Mao, ChuanbinFerroelectric materials, such as tetragonal barium titanate (BaTiO3), have been widely used in a variety of areas including bioimaging, biosensing, and high power switching devices. However, conventional methods for the synthesis of tetragonal phase BaTiO3 usually require toxic organic reagents and high temperature treatments, and are thus not environment-friendly and energy-efficient. Here, we took advantage of the phage display technique to develop a novel strategy for the synthesis of BaTiO3 nanowires. We identified a short BaTiO3-binding/nucleating peptide, CRGATPMSC (named RS), from a phage-displayed random peptide library by biopanning technique and then genetically fused the peptide to the major coat protein (pVIII) of filamentous M13 phages to form the pVIII-RS phages. We found that the resultant phages could not only bind with the presynthesized BaTiO3 crystals but also induce the nucleation of uniform tetragonal BaTiO3 nanocrystals at room temperature and without the use of toxic reagents to form one-dimensional polycrystalline BaTiO3 nanowires. This approach enables the green synthesis of BaTiO3 polycrystalline nanowires with potential applications in bioimaging and biosensing fields.Item Rapid fabrication of hydrogel micropatterns by projection stereolithography for studying self-organized developmental patterning(Public Library of Science, 2021) Zhu, Ye; Sazer, Daniel; Miller, Jordan S.; Warmflash, AryehSelf-organized patterning of mammalian embryonic stem cells on micropatterned surfaces has previously been established as an in vitro platform for early mammalian developmental studies, complimentary to in vivo studies. Traditional micropatterning methods, such as micro-contact printing (μCP), involve relatively complicated fabrication procedures, which restricts widespread adoption by biologists. Here, we demonstrate a rapid method of micropatterning by printing hydrogel micro-features onto a glass-bottomed culture vessel. The micro-features are printed using a projection stereolithography bioprinter yielding hydrogel structures that geometrically restrict the attachment of cells or proteins. Compared to traditional and physical photomasks, a digitally tunable virtual photomask is used in the projector to generate blue light patterns that enable rapid iteration with minimal cost and effort. We show that a protocol that makes use of this method together with LN521 coating, an extracellular matrix coating, creates a surface suitable for human embryonic stem cell (hESC) attachment and growth with minimal non-specific adhesion. We further demonstrate that self-patterning of hESCs following previously published gastrulation and ectodermal induction protocols achieves results comparable with those obtained with commercially available plates.