Browsing by Author "Yu, Rong"
Now showing 1 - 20 of 24
Results Per Page
Sort Options
Item A Mott insulator continuously connected to iron pnictide superconductors(Springer Nature, 2016) Song, Yu; Yamani, Zahra; Cao, Chongde; Li, Yu; Zhang, Chenglin; Chen, Justin S.; Huang, Qingzhen; Wu, Hui; Tao, Jing; Zhu, Yimei; Tian, Wei; Chi, Songxue; Cao, Huibo; Huang, Yao-Bo; Dantz, Marcus; Schmitt, Thorsten; Yu, Rong; Nevidomskyy, Andriy H.; Morosan, Emilia; Si, Qimiao; Dai, Pengcheng; Rice Center for Quantum MaterialsIron-based superconductivity develops near an antiferromagnetic order and out of a bad-metal normal state, which has been interpreted as originating from a proximate Mott transition. Whether an actual Mott insulator can be realized in the phase diagram of the iron pnictides remains an open question. Here we use transport, transmission electron microscopy, X-ray absorption spectroscopy, resonant inelastic X-ray scattering and neutron scattering to demonstrate that NaFe1−xCuxAs near x≈0.5 exhibits real space Fe and Cu ordering, and are antiferromagnetic insulators with the insulating behaviour persisting above the Néel temperature, indicative of a Mott insulator. On decreasing x from 0.5, the antiferromagnetic-ordered moment continuously decreases, yielding to superconductivity ∼x=0.05. Our discovery of a Mott-insulating state in NaFe1−xCuxAs thus makes it the only known Fe-based material, in which superconductivity can be smoothly connected to the Mott-insulating state, highlighting the important role of electron correlations in the high-Tc superconductivity.Item Antiferroquadrupolar and Ising-Nematic Orders of a Frustrated Bilinear-Biquadratic Heisenberg Model and Implications for the Magnetism of FeSe(American Physical Society, 2015) Yu, Rong; Si, QimiaoMotivated by the properties of the iron chalcogenides, we study the phase diagram of a generalized Heisenberg model with frustrated bilinear-biquadratic interactions on a square lattice. We identify zero-temperature phases with antiferroquadrupolar and Ising-nematic orders. The effects of quantum fluctuations and interlayer couplings are analyzed. We propose the Ising-nematic order as underlying the structural phase transition observed in the normal state of FeSe, and discuss the role of the Goldstone modes of the antiferroquadrupolar order for the dipolar magnetic fluctuations in this system. Our results provide a considerably broadened perspective on the overall magnetic phase diagram of the iron chalcogenides and pnictides, and are amenable to tests by new experiments.Item Correlation-driven electronic reconstruction in FeTe1−xSex(Springer Nature, 2022) Huang, Jianwei; Yu, Rong; Xu, Zhijun; Zhu, Jian-Xin; Oh, Ji Seop; Jiang, Qianni; Wang, Meng; Wu, Han; Chen, Tong; Denlinger, Jonathan D.; Mo, Sung-Kwan; Hashimoto, Makoto; Michiardi, Matteo; Pedersen, Tor M.; Gorovikov, Sergey; Zhdanovich, Sergey; Damascelli, Andrea; Gu, Genda; Dai, Pengcheng; Chu, Jiun-Haw; Lu, Donghui; Si, Qimiao; Birgeneau, Robert J.; Yi, Ming; Rice Center for Quantum MaterialsElectronic correlation is of fundamental importance to high temperature superconductivity. While the low energy electronic states in cuprates are dominantly affected by correlation effects across the phase diagram, observation of correlation-driven changes in fermiology amongst the iron-based superconductors remains rare. Here we present experimental evidence for a correlation-driven reconstruction of the Fermi surface tuned independently by two orthogonal axes of temperature and Se/Te ratio in the iron chalcogenide family FeTe1−xSex. We demonstrate that this reconstruction is driven by the de-hybridization of a strongly renormalized dxy orbital with the remaining itinerant iron 3d orbitals in the emergence of an orbital-selective Mott phase. Our observations are further supported by our theoretical calculations to be salient spectroscopic signatures of such a non-thermal evolution from a strongly correlated metallic phase into an orbital-selective Mott phase in dxy as Se concentration is reduced.Item Electron Correlation and Spin Dynamics in Iron Pnictides and Chalcogenides(arXiv, 2012) Yu, Rong; Si, Qimiao; Goswami, Pallab; Abrahams, ElihuItem Glide reflection symmetry, Brillouin zone folding, and superconducting pairing for the P4/nmm space group(American Physical Society, 2015) Nica, Emilian M.; Yu, Rong; Si, QimiaoMotivated by the studies of the superconducting pairing states in the iron-based superconductors, we analyze the effects of Brillouin zone folding procedure from a space-group symmetry perspective for a general class of materials with the P4/nmm space group. The Brillouin zone folding amounts to working with an effective 1-Fe unit cell, instead of the crystallographic 2-Fe unit cell. We show that the folding procedure can be justified by the validity of a glide reflection symmetry throughout the crystallographic Brillouin zone and by the existence of a minimal double degeneracy along the edges of the latter. We also demonstrate how the folding procedure fails when a local spin-orbit coupling is included although the latter does not break any of the space-group symmetries of the bare Hamiltonian. In light of these general symmetry considerations, we further discuss the implications of the glide reflection symmetry for the superconducting pairing in an effective multiorbital t−J1−J2 model. We find that, for spin-singlet pairing states, the P4/nmm space-group symmetry allows only even parity under the glide reflection and zero total momentum.Item Global phase diagram and momentum distribution of single-particle excitations in Kondo insulators(American Physical Society, 2018) Pixley, J.H.; Yu, Rong; Paschen, Silke; Si, QimiaoKondo insulators are emerging as a simplified setting to study both magnetic and insulator-to-metal quantum phase transitions. Here, we study the half-filled Anderson lattice model defined on a magnetically frustrated Shastry-Sutherland geometry. We determine a “global” phase diagram that applies to both the local-moment and intermediate-valence regimes. This provides the theoretical basis for understanding how tuning a Kondo insulator by external parameters can close its hybridization gap, liberate the local-moment spins from the conduction electrons, and lead to a magnetically correlated metal. We also calculate the momentum distribution of the single-particle excitations in the Kondo insulating state, and show how Fermi-surface-like features emerge as a precursor to the actual Fermi surfaces of the Kondo-destroyed metals. The implications for an incipient Fermi surface and quantum phase transitions of Kondo insulators including SmB6 are discussed.Item Kondo Destruction and Quantum Criticality in Kondo Lattice Systems(The Physical Society of Japan, 2014) Si, Qimiao; Pixley, Jedediah H.; Nica, Emilian; Yamamoto, Seiji J.; Goswami, Pallab; Yu, Rong; Kirchner, StefanConsiderable efforts have been made in recent years to theoretically understand quantum phase transitions in Kondo lattice systems. A particular focus is on Kondo destruction, which leads to quantum criticality that goes beyond the Landau framework of order-parameter fluctuations. This unconventional quantum criticality has provided an understanding of the unusual dynamical scaling observed experimentally. It also predicted a sudden jump of the Fermi surface and an extra (Kondo destruction) energy scale, both of which have been verified by systematic experiments. Considerations of Kondo destruction have in addition yielded a global phase diagram, which has motivated the current interest in heavy fermion materials with variable dimensionality or geometrical frustration. Here we summarize these developments, and discuss some of the ongoing work and open issues. We also consider the implications of these results for superconductivity. Finally, we address the effect of spin–orbit coupling on the global phase diagram, suggest that SmB6 under pressure may display unconventional superconductivity in the transition regime between a Kondo insulator phase and an antiferroamgnetic metal phase, and argue that the interfaces of heavy-fermion heterostructures will provide a fertile setting to explore topological properties of both Kondo insulators and heavy-fermion superconductors.Item Local orthorhombic lattice distortions in the paramagnetic tetragonal phase of superconducting NaFe1−xNixAs(Springer Nature, 2018) Wang, Weiyi; Song, Yu; Cao, Chongde; Tseng, Kuo-Feng; Keller, Thomas; Li, Yu; Harriger, L.W.; Tian, Wei; Chi, Songxue; Yu, Rong; Nevidomskyy, Andriy H.; Dai, PengchengUnderstanding the interplay between nematicity, magnetism and superconductivity is pivotal for elucidating the physics of iron-based superconductors. Here we use neutron scattering to probe magnetic and nematic orders throughout the phase diagram of NaFe1-xNixAs, finding that while both static antiferromagnetic and nematic orders compete with superconductivity, the onset temperatures for these two orders remain well separated approaching the putative quantum critical points. We uncover local orthorhombic distortions that persist well above the tetragonal-to-orthorhombic structural transition temperature Ts in underdoped samples and extend well into the overdoped regime that exhibits neither magnetic nor structural phase transitions. These unexpected local orthorhombic distortions display Curie-Weiss temperature dependence and become suppressed below the superconducting transition temperature Tc, suggesting that they result from the large nematic susceptibility near optimal superconductivity. Our results account for observations of rotational symmetry breaking above Ts, and attest to the presence of significant nematic fluctuations near optimal superconductivity.Item Local Orthorhombicity in the Magnetic ${C}_{4}$ Phase of the Hole-Doped Iron-Arsenide Superconductor ${\mathrm{Sr}}_{1\ensuremath{-}x}{\mathrm{Na}}_{x}{\mathrm{Fe}}_{2}{\mathrm{As}}_{2}$(American Physical Society, 2017) Frandsen, Benjamin A.; Taddei, Keith M.; Yi, Ming; Frano, Alex; Guguchia, Zurab; Yu, Rong; Si, Qimiao; Bugaris, Daniel E.; Stadel, Ryan; Osborn, Raymond; Rosenkranz, Stephan; Chmaissem, Omar; Birgeneau, Robert J.; Rice Center for Quantum MaterialsWe report on temperature-dependent pair distribution function measurements of Sr1−xNaxFe2As2, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C4 phase. Quantitative refinements indicate that the instantaneous local structure in the C4 phase comprises fluctuating orthorhombic regions with a length scale of ∼2 nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. These results highlight the exceptionally large nematic susceptibility of iron-based superconductors and have significant implications for the magnetic C4 phase and the neighboring C2 and superconducting phases.Item Neutron spin resonance as a probe of superconducting gap anisotropy in partially detwinned electron underdoped ${\mathrm{NaFe}}_{0.985}{\mathrm{Co}}_{0.015}\mathrm{As}$(American Physical Society, 2015) Zhang, Chenglin; Park, J.T.; Lu, Xingye; Yu, Rong; Li, Yu; Zhang, Wenliang; Zhao, Yang; Lynn, J.W.; Si, Qimiao; Dai, PengchengWe use inelastic neutron scattering (INS) to study the spin excitations in partially detwinned NaFe0.985Co0.015As which has coexisting static antiferromagnetic (AF) order and superconductivity (Tc=15 K, TN=30 K). In previous INS work on a twinned sample, spin excitations formed a dispersive sharp resonance near Er1=3.25 meV and a broad dispersionless mode at Er1=6 meV at the AF ordering wave vector QAF=Q1=(1,0) and its twinned domain Q2=(0,1). For partially detwinned NaFe0.985Co0.015As with the static AF order mostly occurring at QAF=(1,0), we still find a double resonance at both wave vectors with similar intensity. Since Q1=(1,0) characterizes the explicit breaking of the spin rotational symmetry associated with the AF order, these results indicate that the double resonance cannot be due to the static and fluctuating AF orders but originate from the superconducting gap anisotropy.Item Neutron spin resonance as a probe of superconducting gap anisotropy in partially detwinned electron underdoped NaFe0.985Co0.015As(American Physical Society, 2015) Zhang, Chenglin; Park, J.T.; Lu, Xingye; Yu, Rong; Li, Yu; Zhang, Wenliang; Zhao, Yang; Lynn, J.W.; Si, Qimiao; Dai, PengchengWe use inelastic neutron scattering (INS) to study the spin excitations in partially detwinned NaFe0.985Co0.015As which has coexisting static antiferromagnetic (AF) order and superconductivity (Tc=15 K, TN=30 K). In previous INS work on a twinned sample, spin excitations formed a dispersive sharp resonance near Er1=3.25ᅠmeV and a broad dispersionless mode at Er1=6 meV at the AF ordering wave vector QAF=Q1=(1,0) and its twinned domain Q2=(0,1). For partially detwinned NaFe0.985Co0.015As with the static AF order mostly occurring at QAF=(1,0), we still find a double resonance at both wave vectors with similar intensity. Since Q1=(1,0) characterizes the explicit breaking of the spin rotational symmetry associated with the AF order, these results indicate that the double resonance cannot be due to the static and fluctuating AF orders but originate from the superconducting gap anisotropy.Item Orbital Selectivity Enhanced by Nematic Order in FeSe(American Physical Society, 2018) Yu, Rong; Zhu, Jian-Xin; Si, QimiaoThe secondary injury cascade that is activated following traumatic brain injury (TBI) induces responses from multiple physiological systems, including the immune system. These responses are not limited to the area of brain injury; they can also alter peripheral organs such as the intestinal tract. Gut microbiota play a role in the regulation of immune cell populations and microglia activation, and microbiome dysbiosis is implicated in immune dysregulation and behavioral abnormalities. However, changes to the gut microbiome induced after acute TBI remains largely unexplored. In this study, we have investigated the impact of TBI on bacterial dysbiosis. To test the hypothesis that TBI results in changes in microbiome composition, we performed controlled cortical impact (CCI) or sham injury in male 9-weeks old C57BL/6J mice. Fresh stool pellets were collected at baseline and at 24 h post-CCI. 16S rRNA based microbiome analysis was performed to identify differential abundance in bacteria at the genus and species level. In all baseline vs. 24 h post-CCI samples, we evaluated species-level differential abundances via clustered and annotated operational taxonomic units (OTU). At a high-level view, we observed significant changes in two genera after TBI, Marvinbryantia, and Clostridiales. At the species-level, we found significant decreases in three species (Lactobacillus gasseri, Ruminococcus flavefaciens, and Eubacterium ventriosum), and significant increases in two additional species (Eubacterium sulci, and Marvinbryantia formatexigens). These results pinpoint critical changes in the genus-level and species-level microbiome composition in injured mice compared to baseline; highlighting a previously unreported acute dysbiosis in the microbiome after TBI.Item Orbital Selectivity in Electron Correlations and Superconducting Pairing of Iron-Based Superconductors(Frontiers Media S.A., 2021) Yu, Rong; Hu, Haoyu; Nica, Emilian M.; Zhu, Jian-Xin; Si, Qimiao; Center for Quantum MaterialsElectron correlations play a central role in iron-based superconductors. In these systems, multiple Fe $3d$-orbitals are active in the low-energy physics, and they are not all degenerate. For these reasons, the role of orbital-selective correlations has been an active topic in the study of the iron-based systems. In this paper, we survey the recent developments on the subject. For the normal state, we emphasize the orbital-selective Mott physics that has been extensively studied, especially in the iron chalcogenides, in the case of electron filling $n \sim 6$. In addition, the interplay between orbital selectivity and electronic nematicity is addressed. For the superconducting state, we summarize the initial ideas for orbital-selective pairing, and discuss the recent explosive activities along this direction. We close with some perspectives on several emerging topics. These include the evolution of the orbital-selective correlations, magnetic and nematic orders and superconductivity as the electron filling factor is reduced from $6$ to $5$, as well as the interplay between electron correlations and topological bandstructure in iron-based superconductors.Item Orbital-Selective Mott Phase in Multiorbital Models for Alkaline Iron Selenides K1−xFe2−ySe2(American Physical Society, 2013) Yu, Rong; Si, QimiaoWe study a multiorbital model for the alkaline iron selenides K1−xFe2−ySe2 using a slave-spin method. With or without ordered vacancies, we identify a metal-to-Mott-insulator transition at the commensurate filling of six 3d electrons per iron ion. For Hund’s couplings beyond a threshold value, this occurs via an intermediate orbital-selective Mott phase, in which the 3d xy orbital is Mott localized while the other 3d orbitals remain itinerant. This phase is still stabilized over a range of carrier dopings. Our results lead to an overall phase diagram for the alkaline iron selenides, which provides a unified framework to understand the interplay between the strength of the vacancy order and carrier doping. In this phase diagram, the orbital-selective Mott phase provides a natural link between the superconducting K1−xFe2−ySe2 and its Mott-insulating parent compound.Item Orbital-selective Mott phase in multiorbital models for iron pnictides and chalcogenides(American Physical Society, 2017) Yu, Rong; Si, QimiaoThere is increasing recognition that the multiorbital nature of the 3 d electrons is important to the proper description of the electronic states in the normal state of the iron-based superconductors. Earlier studies of the pertinent multiorbital Hubbard models identified an orbital-selective Mott phase, which anchors the orbital-selective behavior seen in the overall phase diagram. An important characteristics of the models is that the orbitals are kinetically coupled, i.e., hybridized, to each other, which makes the orbital-selective Mott phase especially nontrivial. A U ( 1 ) slave-spin method was used to analyze the model with nonzero orbital-level splittings. Here we develop a Landau free-energy functional to shed further light on this issue. We put the microscopic analysis from the U ( 1 ) slave-spin approach in this perspective, and show that the intersite spin correlations are crucial to the renormalization of the bare hybridization amplitude towards zero and the concomitant realization of the orbital-selective Mott transition. Based on this insight, we discuss additional ways to study the orbital-selective Mott physics from a dynamical competition between the interorbital hybridization and collective spin correlations. Our results demonstrate the robustness of the orbital-selective Mott phase in the multiorbital models appropriate for the iron-based superconductors.Item Orbital-selective superconductivity in the nematic phase of FeSe(American Physical Society, 2018) Hu, Haoyu; Yu, Rong; Nica, Emilian M.; Zhu, Jian-Xin; Si, QimiaoThe interplay between electronic orders and superconductivity is central to the physics of unconventional superconductors, and is particularly pronounced in the iron-based superconductors. Motivated by recent experiments on FeSe, we study the superconducting pairing in its nematic phase in a multiorbital model with frustrated spin-exchange interactions. Electron correlations in the presence of nematic order give rise to an enhanced orbital selectivity in the superconducting pairing amplitudes. This orbital-selective pairing produces a large gap anisotropy on the Fermi surface. Our results naturally explain the striking experimental observations, and shed light on the unconventional superconductivity of correlated electron systems in general.Item Orbital-selective superconductivity, gap anisotropy, and spin resonance excitations in a multiorbitalᅠt-J1-J2ᅠmodel for iron pnictides(American Physical Society, 2014) Yu, Rong; Zhu, Jian-Xin; Si, QimiaoWe study the orbital-selective superconducting pairing in a five-orbital t-J1-J2 model for iron pnictides. Depending on the orbital selectivity of electron correlations and the orbital characters along the Fermi surface, the superconducting gap in an A1g pairing state may exhibit anisotropy. This anisotropy varies with the degree of J1-J2 magnetic frustration. In the superconducting state, the frequency dependence of the dynamical spin susceptibility at the antiferromagnetic wave vector (π,0) shows a resonance, whose width is enhanced by the orbital selectivity of the superconducting gap. When the degree of the orbital selectivity is sufficiently strong, the resonance peak may be split in two. We discuss the implications of our results on the recent angle-resolved photoemission and neutron-scattering measurements in several superconducting iron pnictides.Item Quantum Phases of the Shastry-Sutherland Kondo Lattice: Implications for the Global Phase Diagram of Heavy-Fermion Metals(American Physical Society, 2014) Pixley, J.H.; Yu, Rong; Si, QimiaoConsiderable recent theoretical and experimental effort has been devoted to the study of quantum criticality and novel phases of antiferromagnetic heavy-fermion metals. In particular, quantum phase transitions have been discovered in heavy-fermion compounds with geometrical frustration. These developments have motivated us to study the competition between the Ruderman-Kittel-Kasuya-Yosida and Kondo interactions on the Shastry-Sutherland lattice. We determine the zero-temperature phase diagram as a function of magnetic frustration and Kondo coupling within a slave-fermion approach. Pertinent phases include the valence bond solid and heavy Fermi liquid. In the presence of antiferromagnetic order, our zero-temperature phase diagram is remarkably similar to the global phase diagram proposed earlier based on general grounds. We discuss the implications of our results for the experiments on Yb2Pt2Pb and related compounds.Item Role of the 245 phase in alkaline iron selenide superconductors revealed by high-pressure studies(American Physical Society, 2014) Gao, Peiwen; Yu, Rong; Sun, Liling; Wang, Hangdong; Wang, Zhen; Wu, Qi; Fang, Minghu; Chen, Genfu; Guo, Jing; Zhang, Chao; Gu, Dachun; Tian, Huanfang; Li, Jianqi; Liu, Jing; Li, Yanchun; Li, Xiaodong; Jiang, Sheng; Yang, Ke; Li, Aiguo; Si, Qimiao; Zhao, ZhongxianThere is considerable interest in uncovering the physics of iron-based superconductivity from the alkaline iron selenides, a materials class containing an insulating phase (245 phase) and a superconducting (SC) phase. Due to the microstructural complexity of these superconductors, the role of the 245 phase in the development of the superconductivity has been a puzzle. Here we demonstrate a comprehensive high-pressure study on the insulating samples with pure 245 phase and biphasic SC samples. We find that the insulating behavior can be completely suppressed by pressure in the insulating samples and also identify an intermediate metallic (M′) state. The Mott insulating (MI) state of the 245 phase and the M′ state coexist over a significant range of pressure up to ∼10 GPa, the same pressure at which the superconductivity of the SC samples vanishes. Our results reveal the M′ state as a pathway that connects the insulating and SC phases of the alkaline iron selenides and indicate that the coexistence and interplay between the MI and M′ states is a necessary condition for superconductivity. Finally, we interpret the M′ state in terms of an orbital selectivity of the correlated 3d electrons.Item Sequential localization of a complex electron fluid(National Academy of Sciences, 2019) Martelli, Valentina; Cai, Ang; Nica, Emilian M.; Taupin, Mathieu; Prokofiev, Andrey; Liu, Chia-Chuan; Lai, Hsin-Hua; Yu, Rong; Ingersent, Kevin; Küchler, Robert; Strydom, André M.; Geiger, Diana; Haenel, Jonathan; Larrea, Julio; Si, Qimiao; Paschen, SilkeComplex and correlated quantum systems with promise for new functionality often involve entwined electronic degrees of freedom. In such materials, highly unusual properties emerge and could be the result of electron localization. Here, a cubic heavy fermion metal governed by spins and orbitals is chosen as a model system for this physics. Its properties are found to originate from surprisingly simple low-energy behavior, with 2 distinct localization transitions driven by a single degree of freedom at a time. This result is unexpected, but we are able to understand it by advancing the notion of sequential destruction of an SU(4) spin–orbital-coupled Kondo entanglement. Our results implicate electron localization as a unified framework for strongly correlated materials and suggest ways to exploit multiple degrees of freedom for quantum engineering.