Correlation-driven electronic reconstruction in FeTe1−xSex

Abstract

Electronic correlation is of fundamental importance to high temperature superconductivity. While the low energy electronic states in cuprates are dominantly affected by correlation effects across the phase diagram, observation of correlation-driven changes in fermiology amongst the iron-based superconductors remains rare. Here we present experimental evidence for a correlation-driven reconstruction of the Fermi surface tuned independently by two orthogonal axes of temperature and Se/Te ratio in the iron chalcogenide family FeTe1−xSex. We demonstrate that this reconstruction is driven by the de-hybridization of a strongly renormalized dxy orbital with the remaining itinerant iron 3d orbitals in the emergence of an orbital-selective Mott phase. Our observations are further supported by our theoretical calculations to be salient spectroscopic signatures of such a non-thermal evolution from a strongly correlated metallic phase into an orbital-selective Mott phase in dxy as Se concentration is reduced.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Huang, Jianwei, Yu, Rong, Xu, Zhijun, et al.. "Correlation-driven electronic reconstruction in FeTe1−xSex." Communications Physics, 5, (2022) Springer Nature: https://doi.org/10.1038/s42005-022-00805-6.

Has part(s)
Forms part of
Rights
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Citable link to this page