Browsing by Author "Ye, Shuzhen"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Chaotic ionization of a Rydberg atom subjected to alternating kicks(2012) Ye, Shuzhen; Dunning, F. B.Quasi-one-dimensional Rydberg atoms exposed to alternating positive and negative electric field pulses (kicks) are an example of a chaotic atomic system. Chaotic ionization is predicted in this system via a phase space turnstile mechanism, and we have explored this experimentally. Turnstiles form a general transport mechanism for numerous chaotic systems, and this study is the first to explicitly illuminate their relevance to atomic ionization. Two experiments are presented. In the first we show that the ionization of the electron depends not only on the initial electron energy, but also on the phase space position of the electron with respect to the turnstile--that part of the electron packet inside the turnstile ionizes quickly, after one period of the applied field, while that part outside the turnstile ionizes after multiple kicking periods. In the second experiment we show the signature of the turnstile manifests itself in the step-function-like behavior of the ionization fraction as a function of the kick strength. This behavior persists for different values of kicking periods and starting electron energies.Item Chaotic ionization of a stationary electron state via a phase space turnstile(American Physical Society, 2013) Burke, Korana; Mitchell, Kevin A.; Ye, Shuzhen; Dunning, F. Barry; Rice Quantum InstituteThe ionization of a highly excited Rydberg atom subjected to a periodic sequence of electric field impulses, or “kicks,” is chaotic. We focus on the dynamics of a single kicking period in order to isolate the ionization mechanism. Potassium Rydberg atoms, prepared in a quasi-one-dimensional state, are exposed to a sequence of ionization kicks, and the total fraction of ionized atoms is then measured. These experimental data are compared to a one-dimensional classical model. The classical analysis reveals that the ionization process is governed by a phase space turnstile—a geometric structure associated with chaotic transport in diverse systems. The turnstile geometry is reflected in the experimental data. Previous work explored the dependence of the turnstile geometry on the kicking period. The present work explores the dependence on the kicking strength. In particular, increasing the kicking strength allows us to observe the stretching of the turnstile lobe as it penetrates the region of phase space occupied by the electronic state, leading to a sharp rise in the total ionization fraction. This work thus highlights the importance of phase space geometry in organizing chaotic transport in atomic Systems.Item Experimental Study of Potassium and Strontium Rydberg Atoms - Chaotic Ionization, Quantum Optical Phenomena and Multiphoton Excitation(2014-04-24) Ye, Shuzhen; Dunning, F. Barry; Killian, Thomas C.; Brooks, Philip R.Very-high-n (n~300) Rydberg atoms serve as a powerful tool to study chaos and quantum optical phenomena. Measurements using a series of alternating impulsive kicks applied to potassium Rydberg atoms reveal that a phase space geometric structure called the turnstile governs the ionization process. Studies of the excitation spectra for potassium Rydberg atoms in a strong sinusoidal electric drive field in the radio frequency (100-300 MHz) regime, display quantum optical phenomena including electromagnetically induced transparency and Aulter-Townes splitting, and the data are well explained within the framework of Floquet theory. In order to study the strong dipole-dipole interactions between neutral atoms, new experimental techniques have been developed to create high densities of very-high-n (n~300-500) strontium Rydberg atoms using two- and three-photon excitation. The data demonstrate that high densities of strongly-polarized quasi-one-dimensional states can be produced and form the basis for further manipulation of the atomic wave functions. The strontium Rydberg states are modeled using a two-active-electron theory which produces results in good agreement with experimental observations.