Browsing by Author "Wu, Hao"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Data publication with the structural biology data grid supports live analysis(Springer Nature, 2016) Meyer, Peter A.; Socias, Stephanie; Key, Jason; Ransey, Elizabeth; Tjon, Emily C.; Buschiazzo, Alejandro; Lei, Ming; Botka, Chris; Withrow, James; Neau, David; Rajashankar, Kanagalaghatta; Anderson, Karen S.; Baxter, Richard H.; Blacklow, Stephen C.; Boggon, Titus J.; Bonvin, Alexandre M.J.J.; Borek, Dominika; Brett, Tom J.; Caflisch, Amedeo; Chang, Chung-I; Chazin, Walter J.; Corbett, Kevin D.; Cosgrove, Michael S.; Crosson, Sean; Dhe-Paganon, Sirano; Di Cera, Enrico; Drennan, Catherine L.; Eck, Michael J.; Eichman, Brandt F.; Fan, Qing R.; Ferré-D'Amaré, Adrian R.; Fromme, J.Christopher; Garcia, K.Christopher; Gaudet, Rachelle; Gong, Peng; Harrison, Stephen C.; Heldwein, Ekaterina E.; Jia, Zongchao; Keenan, Robert J.; Kruse, Andrew C.; Kvansakul, Marc; McLellan, Jason S.; Modis, Yorgo; Nam, Yunsun; Otwinowski, Zbyszek; Pai, Emil F.; Pereira, Pedro José Barbosa; Petosa, Carlo; Raman, C.S.; Rapoport, Tom A.; Roll-Mecak, Antonina; Rosen, Michael K.; Rudenko, Gabby; Schlessinger, Joseph; Schwartz, Thomas U.; Shamoo, Yousif; Sondermann, Holger; Tao, Yizhi Jane; Tolia, Niraj H.; Tsodikov, Oleg V.; Westover, Kenneth D.; Wu, Hao; Foster, Ian; Fraser, James S.; Maia, Filipe R.N.C.; Gonen, Tamir; Kirchhausen, Tom; Diederichs, Kay; Crosas, Mercè; Sliz, PiotrAccess to experimental X-ray diffraction image data is fundamental for validation and reproduction of macromolecular models and indispensable for development of structural biology processing methods. Here, we established a diffraction data publication and dissemination system, Structural Biology Data Grid (SBDG; data.sbgrid.org), to preserve primary experimental data sets that support scientific publications. Data sets are accessible to researchers through a community driven data grid, which facilitates global data access. Our analysis of a pilot collection of crystallographic data sets demonstrates that the information archived by SBDG is sufficient to reprocess data to statistics that meet or exceed the quality of the original published structures. SBDG has extended its services to the entire community and is used to develop support for other types of biomedical data sets. It is anticipated that access to the experimental data sets will enhance the paradigm shift in the community towards a much more dynamic body of continuously improving data analysis.Item Deeptime: a Python library for machine learning dynamical models from time series data(IOP Publishing, 2021) Hoffmann, Moritz; Scherer, Martin; Hempel, Tim; Mardt, Andreas; Silva, Brian de; Husic, Brooke E.; Klus, Stefan; Wu, Hao; Kutz, Nathan; Brunton, Steven L.; Noé, FrankGeneration and analysis of time-series data is relevant to many quantitative fields ranging from economics to fluid mechanics. In the physical sciences, structures such as metastable and coherent sets, slow relaxation processes, collective variables, dominant transition pathways or manifolds and channels of probability flow can be of great importance for understanding and characterizing the kinetic, thermodynamic and mechanistic properties of the system. Deeptime is a general purpose Python library offering various tools to estimate dynamical models based on time-series data including conventional linear learning methods, such as Markov state models (MSMs), Hidden Markov Models and Koopman models, as well as kernel and deep learning approaches such as VAMPnets and deep MSMs. The library is largely compatible with scikit-learn, having a range of Estimator classes for these different models, but in contrast to scikit-learn also provides deep Model classes, e.g. in the case of an MSM, which provide a multitude of analysis methods to compute interesting thermodynamic, kinetic and dynamical quantities, such as free energies, relaxation times and transition paths. The library is designed for ease of use but also easily maintainable and extensible code. In this paper we introduce the main features and structure of the deeptime software. Deeptime can be found under https://deeptime-ml.github.io/.Item Rapid Calculation of Molecular Kinetics Using Compressed Sensing(American Chemical Society, 2018) Litzinger, Florian; Boninsegna, Lorenzo; Wu, Hao; Nüske, Feliks; Patel, Raajen; Baraniuk, Richard; Noé, Frank; Clementi, Cecilia; Center for Theoretical Biological PhysicsRecent methods for the analysis of molecular kinetics from massive molecular dynamics (MD) data rely on the solution of very large eigenvalue problems. Here we build upon recent results from the field of compressed sensing and develop the spectral oASIS method, a highly efficient approach to approximate the leading eigenvalues and eigenvectors of large generalized eigenvalue problems without ever having to evaluate the full matrices. The approach is demonstrated to reduce the dimensionality of the problem by 1 or 2 orders of magnitude, directly leading to corresponding savings in the computation and storage of the necessary matrices and a speedup of 2 to 4 orders of magnitude in solving the eigenvalue problem. We demonstrate the method on extensive data sets of protein conformational changes and protein-ligand binding using the variational approach to conformation dynamics (VAC) and time-lagged independent component analysis (TICA). Our approach can also be applied to kernel formulations of VAC, TICA, and extended dynamic mode decomposition (EDMD).