Browsing by Author "Tour, J.M."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields(American Physical Society, 2012) Booshehri, L.G.; Mielke, C.H.; Rickel, D.G.; Crooker, S.A.; Zhang, Q.; Ren, L.; Haroz, E.H.; Rustagi, A.; Stanton, C.J.; Jin, Z.; Sun, Z.; Yan, Z.; Tour, J.M.; Kono, J.Using ultrahigh magnetic fields up to 170 T and polarized midinfrared radiation with tunable wavelengths from 9.22 to 10.67 μm, we studied cyclotron resonance in large-area graphene grown by chemical vapor deposition. Circular polarization dependent studies reveal strong p-type doping for as-grown graphene, and the dependence of the cyclotron resonance on radiation wavelength allows for a determination of the Fermi energy. Thermal annealing shifts the Fermi energy to near the Dirac point, resulting in the simultaneous appearance of hole and electron cyclotron resonance in the magnetic quantum limit, even though the sample is still p-type, due to graphene's linear dispersion and unique Landau level structure. These high-field studies therefore allow for a clear identification of cyclotron resonance features in large-area, low-mobility graphene samples.Item Dynamic response of exchange bias in graphene nanoribbons(American Institute of Physics, 2012) Jammalamadaka, S. Narayana; Rao, S.S.; Vanacken, J.; Moshchalkov, V.V.; Lu, Wei; Tour, J.M.; Smalley Institute for Nanoscale Science and TechnologyThe dynamics of magnetic hysteresis, including the training effect and the field sweep rate dependence of the exchange bias, is experimentally investigated in exchange-coupled potassium split graphenenanoribbons (GNRs). We find that, at low field sweep rate, the pronounced absolute training effect is present over a large number of cycles. This is reflected in a gradual decrease of the exchange bias with the sequential field cycling. However, at high field sweep rate above 0.5 T/min, the training effect is not prominent. With the increase in field sweep rate, the average value of exchange bias field grows and is found to follow power-law behavior. The response of the exchange bias field to the field sweep rate variation is linked to the difference in the time it takes to perform a hysteresis loop measurement compared with the relaxation time of the anti-ferromagnetically aligned spins. The present results may broaden our current understanding of magnetism of GNRs and would be helpful in establishing the GNRs-based spintronic devices.Item Ferromagnetism in Graphene Nanoribbons: Split versus Oxidative Unzipped Ribbons(American Chemical Society, 2012) Rao, S.S.; Jammalamadaka, S. Narayana; Stesmans, A.; Moshchalkov, V.V.; van Tol, J.; Kosynkin, D.V.; Higginbotham, A.; Tour, J.M.; Smalley Institute for Nanoscale Science and TechnologyTwo types of graphene nanoribbons: (a) potassium-split graphene nanoribbons (GNRs), and (b) oxidative unzipped and chemically converted graphene nanoribbons (CCGNRs) were investigated for their magnetic properties using the combination of static magnetization and electron spin resonance measurements. The two types of ribbons possess remarkably different magnetic properties. While a low-temperature ferromagnet-like feature is observed in both types of ribbons, such room-temperature feature persists only in potassium-split ribbons. The GNRs show negative exchange bias, but the CCGNRs exhibit a モpositive exchange biasヤ. Electron spin resonance measurements suggest that the carbon-related defects may be responsible for the observed magnetic behavior in both types of ribbons. Furthermore, information on the proton hyperfine coupling strength has been obtained from hyperfine sublevel correlation experiments performed on the GNRs. Electron spin resonance finds no evidence for the presence of potassium (cluster) related signals, pointing to the intrinsic magnetic nature of the ribbons. Our combined experimental results may indicate the coexistence of ferromagnetic clusters with antiferromagnetic regions leading to disordered magnetic phase. We discuss the possible origin of the observed contrast in the magnetic behaviors of the two types of ribbons studied.Item Thermal conductivity enhancement of laser induced graphene foam upon P3HT infiltration(AIP Publishing, 2016) Smith, M.K.; Luong, D.X.; Bougher, T.L.; Kalaitzidou, K.; Tour, J.M.; Cola, B.A.; NanoCarbon CenterSignificant research has been dedicated to the exploration of high thermal conductivity polymer composite materials with conductive filler particles for use in heat transfer applications. However, poor particle dispersibility and interfacial phonon scattering have limited the effective composite thermal conductivity. Three-dimensional foams with high ligament thermal conductivity offer a potential solution to the two aforementioned problems but are traditionally fabricated through expensive and/or complex manufacturing methods. Here, laser induced graphene foams, fabricated through a simple and cost effective laser ablation method, are infiltrated with poly(3-hexylthiophene) in a step-wise fashion to demonstrate the impact of polymer on the thermal conductivity of the composite system. Surprisingly, the addition of polymer results in a drastic (250%) improvement in material thermal conductivity, enhancing the graphene foam's thermal conductivity from 0.68 W/m-K to 1.72 W/m-K for the fully infiltrated composite material. Graphene foam density measurements and theoretical models are utilized to estimate the effective ribbon thermal conductivity as a function of polymer filling. Here, it is proposed that the polymer solution acts as a binding material, which draws graphene ligaments together through elastocapillary coalescence and bonds these ligaments upon drying, resulting in greatly reduced contact resistance within the foam and an effective thermal conductivity improvement greater than what would be expected from the addition of polymer alone.