Browsing by Author "Sobhani, Ali"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2ᅠwith resonant plasmonic nanoshells(AIP Publishing LLC., 2014) Sobhani, Ali; Lauchner, Adam; Najmaei, Sina; Ayala-Orozco, Ciceron; Wen, Fangfang; Lou, Jun; Halas, Naomi J.Monolayer molybdenum disulfide (MoS2) produced by controlled vapor-phase synthesis is a commercially promising new two-dimensional material for optoelectronics because of its direct bandgap and broad absorption in the visible and ultraviolet regimes. By tuning plasmonic core-shell nanoparticles to the direct bandgap of monolayer MoS2 and depositing them sparsely (<1% coverage) onto the material's surface, we observe a threefold increase in photocurrent and a doubling of photoluminescence signal for both excitonic transitions, amplifying but not altering the intrinsic spectral response.Item Ternary CuIn7Se11: Towards Ultra-Thin Layered Photodetectors and Photovoltaic Devices(Wiley, 2014) Lei, Sidong; Sobhani, Ali; Wen, Fangfang; George, Antony; Wang, Qizhong; Huang, Yihan; Dong, Pei; Li, Bo; Najmaei, Sina; Bellah, James; Gupta, Gautam; Mohite, Aditya D.; Ge, Liehui; Lou, Jun; Halas, Naomi J.; Vajtai, Robert; Ajayan, Pulickel2D materials have been widely studied over the past decade for their potential applications in electronics and optoelectronics. In these materials, elemental composition plays a critical role in defining their physical properties. Here we report the first successful synthesis of individual high quality CuIn7Se11 (CIS) ternary 2D layers and demonstrate their potential use in photodetection applications. Photoconductivity measurements show an indirect bandgap of 1.1 eV for few-layered CIS, an external quantum efficiency of 88.0 % with 2 V bias across 2 μm channel with and a signal-to-noise ratio larger than 95 dB. By judicious choice of electrode materials, we demonstrate the possibility of layered CIS-based 2D photovoltaic devices. This study examines this ternary 2D layered system for the first time, demonstrating the clear potential for layered CIS in 2D material-based optoelectronic device applications.