Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Schneider, Rebecca"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Enabling accurate and early detection of recently emerged SARS-CoV-2 variants of concern in wastewater
    (Springer Nature, 2023) Sapoval, Nicolae; Liu, Yunxi; Lou, Esther G.; Hopkins, Loren; Ensor, Katherine B.; Schneider, Rebecca; Stadler, Lauren B.; Treangen, Todd J.
    As clinical testing declines, wastewater monitoring can provide crucial surveillance on the emergence of SARS-CoV-2 variant of concerns (VoCs) in communities. In this paper we present QuaID, a novel bioinformatics tool for VoC detection based on quasi-unique mutations. The benefits of QuaID are three-fold: (i) provides up to 3-week earlier VoC detection, (ii) accurate VoC detection (>95% precision on simulated benchmarks), and (iii) leverages all mutational signatures (including insertions & deletions).
  • Loading...
    Thumbnail Image
    Item
    Online trend estimation and detection of trend deviations in sub-sewershed time series of SARS-CoV-2 RNA measured in wastewater
    (Springer Nature, 2024) Ensor, Katherine B.; Schedler, Julia C.; Sun, Thomas; Schneider, Rebecca; Mulenga, Anthony; Wu, Jingjing; Stadler, Lauren B.; Hopkins, Loren
    Wastewater surveillance has proven a cost-effective key public health tool to understand a wide range of community health diseases and has been a strong source of information on community levels and spread for health departments throughout the SARS- CoV-2 pandemic. Studies spanning the globe demonstrate the strong association between virus levels observed in wastewater and quality clinical case information of the population served by the sewershed. Few of these studies incorporate the temporal dependence present in sampling over time, which can lead to estimation issues which in turn impact conclusions. We contribute to the literature for this important public health science by putting forward time series methods coupled with statistical process control that (1) capture the evolving trend of a disease in the population; (2) separate the uncertainty in the population disease trend from the uncertainty due to sampling and measurement; and (3) support comparison of sub-sewershed population disease dynamics with those of the population represented by the larger downstream treatment plant. Our statistical methods incorporate the fact that measurements are over time, ensuring correct statistical conclusions. We provide a retrospective example of how sub-sewersheds virus levels compare to the upstream wastewater treatment plant virus levels. An on-line algorithm supports real-time statistical assessment of deviations of virus level in a population represented by a sub-sewershed to the virus level in the corresponding larger downstream wastewater treatment plant. This information supports public health decisions by spotlighting segments of the population where outbreaks may be occurring.
  • Loading...
    Thumbnail Image
    Item
    Public Health Interventions Guided by Houston’s Wastewater Surveillance Program During the COVID-19 Pandemic
    (Sage, 2023) Hopkins, Loren; Ensor, Katherine B.; Stadler, Lauren; Johnson, Catherine D.; Schneider, Rebecca; Domakonda, Kaavya; McCarthy, James J.; Septimus, Edward J.; Persse, David; Williams, Stephen L.
    Since the start of the COVID-19 pandemic, wastewater surveillance has emerged as a powerful tool used by public health authorities to track SARS-CoV-2 infections in communities. In May 2020, the Houston Health Department began working with a coalition of municipal and academic partners to develop a wastewater monitoring and reporting system for the city of Houston, Texas. Data collected from the system are integrated with other COVID-19 surveillance data and communicated through different channels to local authorities and the general public. This information is used to shape policies and inform actions to mitigate and prevent the spread of COVID-19 at municipal, institutional, and individual levels. Based on the success of this monitoring and reporting system to drive public health protection efforts, the wastewater surveillance program is likely to become a standard part of the public health toolkit for responding to infectious diseases and, potentially, other disease-causing outbreaks.
  • Loading...
    Thumbnail Image
    Item
    Wastewater surveillance of SARS-CoV-2 and influenza in preK-12 schools shows school, community, and citywide infections
    (Elsevier, 2023) Wolken, Madeline; Sun, Thomas; McCall, Camille; Schneider, Rebecca; Caton, Kelsey; Hundley, Courtney; Hopkins, Loren; Ensor, Katherine; Domakonda, Kaavya; Prashant, Kalvapalle; Persse, David; Williams, Stephen; Stadler, Lauren B.
    Wastewater surveillance is a passive and efficient way to monitor the spread of infectious diseases in large populations and high transmission areas such as preK-12 schools. Infections caused by respiratory viruses in school-aged children are likely underreported, particularly because many children may be asymptomatic or mildly symptomatic. Wastewater monitoring of SARS-CoV-2 has been studied extensively and primarily by sampling at centralized wastewater treatment plants, and there are limited studies on SARS-CoV-2 in preK-12 school wastewater. Similarly, wastewater detections of influenza have only been reported in wastewater treatment plant and university manhole samples. Here, we present the results of a 17-month wastewater monitoring program for SARS-CoV-2 (n = 2176 samples) and influenza A and B (n = 1217 samples) in 51 preK-12 schools. We show that school wastewater concentrations of SARS-CoV-2 RNA were strongly associated with COVID-19 cases in schools and community positivity rates, and that influenza detections in school wastewater were significantly associated with citywide influenza diagnosis rates. Results were communicated back to schools and local communities to enable mitigation strategies to stop the spread, and direct resources such as testing and vaccination clinics. This study demonstrates that school wastewater surveillance is reflective of local infections at several population levels and plays a crucial role in the detection and mitigation of outbreaks.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892