Browsing by Author "Rice, William D."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Electron dynamics in single-walled carbon nanotubes(2010) Rice, William D.; Kono, JunichiroThis thesis looks at three aspects of electron dynamics in single-walled carbon nanotubes (SWNTs): electron spin resonance (ESR), conductivity, and the dynamic Franz-Keldysh effect (DFKE). The temperature dependence of ESR in annealed SWNTs is presented. It is shown that the spin susceptibility is greatly increased due to the absence of oxygen. In addition, the electrons become more localized due to the annealing, leading to a change in the asymmetry of the ESR signal as a function of temperature. I observe motional narrowing of the ESR resonance. Temperature dependent conductivity of SWNT decant films is also presented. These measurements support the ESR data by indicating that electron movement is hindered as temperature is lowered. Last, this thesis describes the first attempt to observe DFKE in SWNTs. Using a free electron laser pump-white light probe and a fiber CCD detection scheme, I attempted to observe the DFKE in an DGU-enriched film.Item Enhancement of the Electron Spin Resonance of Single-Walled Carbon Nanotubes by Oxygen Removal(American Chemical Society, 2012) Rice, William D.; Weber, Ralph T.; Leonard, Ashley D.; Tour, James M.; Nikolaev, Pavel; Arepalli, Sivaram; Berka, Vladimir; Tsai, Ah-Lim; Kono, JunichiroWe have observed a nearly 4-fold increase in the electron spin resonance (ESR) signal from an ensemble of single-walled carbon nanotubes (SWCNTs) due to oxygen desorption. By performing temperature-dependent ESR spectroscopy both before and after thermal annealing, we found that the ESR in SWCNTs can be reversibly altered via the molecular oxygen content in the samples. Independent of the presence of adsorbed oxygen, a Curie law (spin susceptibility ∝ 1/T) is seen from ∼4 to 300 K, indicating that the probed spins are finite-level species. For both the pre-annealed and post-annealed sample conditions, the ESR line width decreased as the temperature was increased, a phenomenon we identify as motional narrowing. From the temperature dependence of the line width, we extracted an estimate of the intertube hopping energy; for both sample conditions, we found this hopping energy to be ∼1.2 meV. Since the spin hopping energy changes only slightly when oxygen is desorbed, we conclude that only the spin susceptibility, not spin transport, is affected by the presence of physisorbed molecular oxygen in SWCNT ensembles. Surprisingly, no line width change is observed when the amount of oxygen in the SWCNT sample is altered, contrary to other carbonaceous systems and certain 1D conducting polymers. We hypothesize that physisorbed molecular oxygen acts as an acceptor (p-type), compensating the donor-like (n-type) defects that are responsible for the ESR signal in bulk SWCNTs.Item Enhancement of the Electron Spin Resonance of Single-Walled Carbon Nanotubes by Oxygen Removal(American Chemical Society, 2012) Rice, William D.; Weber, Ralph T.; Leonard, Ashley D.; Tour, James M.; Nikolaev, Pavel; Arepalli, Sivaram; Berka, Vladimir; Tsai, Ah-Lim; Kono, JunichiroWe have observed a nearly 4-fold increase in the electron spin resonance (ESR) signal from an ensemble of single-walled carbon nanotubes (SWCNTs) due to oxygen desorption. By performing temperature-dependent ESR spectroscopy both before and after thermal annealing, we found that the ESR in SWCNTs can be reversibly altered via the molecular oxygen content in the samples. Independent of the presence of adsorbed oxygen, a Curie law (spin susceptibility ∝ 1/T) is seen from ∼4 to 300 K, indicating that the probed spins are finite-level species. For both the pre-annealed and post-annealed sample conditions, the ESR line width decreased as the temperature was increased, a phenomenon we identify as motional narrowing. From the temperature dependence of the line width, we extracted an estimate of the intertube hopping energy; for both sample conditions, we found this hopping energy to be ∼1.2 meV. Since the spin hopping energy changes only slightly when oxygen is desorbed, we conclude that only the spin susceptibility, not spin transport, is affected by the presence of physisorbed molecular oxygen in SWCNT ensembles. Surprisingly, no line width change is observed when the amount of oxygen in the SWCNT sample is altered, contrary to other carbonaceous systems and certain 1D conducting polymers. We hypothesize that physisorbed molecular oxygen acts as an acceptor (p-type), compensating the donor-like (n-type) defects that are responsible for the ESR signal in bulk SWCNTs.