Electron dynamics in single-walled carbon nanotubes

Date
2010
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

This thesis looks at three aspects of electron dynamics in single-walled carbon nanotubes (SWNTs): electron spin resonance (ESR), conductivity, and the dynamic Franz-Keldysh effect (DFKE). The temperature dependence of ESR in annealed SWNTs is presented. It is shown that the spin susceptibility is greatly increased due to the absence of oxygen. In addition, the electrons become more localized due to the annealing, leading to a change in the asymmetry of the ESR signal as a function of temperature. I observe motional narrowing of the ESR resonance. Temperature dependent conductivity of SWNT decant films is also presented. These measurements support the ESR data by indicating that electron movement is hindered as temperature is lowered. Last, this thesis describes the first attempt to observe DFKE in SWNTs. Using a free electron laser pump-white light probe and a fiber CCD detection scheme, I attempted to observe the DFKE in an DGU-enriched film.

Description
Degree
Master of Science
Type
Thesis
Keywords
Electromagnetics, Condensed matter physics, Optics
Citation

Rice, William D.. "Electron dynamics in single-walled carbon nanotubes." (2010) Master’s Thesis, Rice University. https://hdl.handle.net/1911/62161.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page