Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mo, Sung-Kwan"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Correlation-driven electronic reconstruction in FeTe1−xSex
    (Springer Nature, 2022) Huang, Jianwei; Yu, Rong; Xu, Zhijun; Zhu, Jian-Xin; Oh, Ji Seop; Jiang, Qianni; Wang, Meng; Wu, Han; Chen, Tong; Denlinger, Jonathan D.; Mo, Sung-Kwan; Hashimoto, Makoto; Michiardi, Matteo; Pedersen, Tor M.; Gorovikov, Sergey; Zhdanovich, Sergey; Damascelli, Andrea; Gu, Genda; Dai, Pengcheng; Chu, Jiun-Haw; Lu, Donghui; Si, Qimiao; Birgeneau, Robert J.; Yi, Ming; Rice Center for Quantum Materials
    Electronic correlation is of fundamental importance to high temperature superconductivity. While the low energy electronic states in cuprates are dominantly affected by correlation effects across the phase diagram, observation of correlation-driven changes in fermiology amongst the iron-based superconductors remains rare. Here we present experimental evidence for a correlation-driven reconstruction of the Fermi surface tuned independently by two orthogonal axes of temperature and Se/Te ratio in the iron chalcogenide family FeTe1−xSex. We demonstrate that this reconstruction is driven by the de-hybridization of a strongly renormalized dxy orbital with the remaining itinerant iron 3d orbitals in the emergence of an orbital-selective Mott phase. Our observations are further supported by our theoretical calculations to be salient spectroscopic signatures of such a non-thermal evolution from a strongly correlated metallic phase into an orbital-selective Mott phase in dxy as Se concentration is reduced.
  • Loading...
    Thumbnail Image
    Item
    Nematic Fluctuations in the Non-Superconducting Iron Pnictide BaFe1.9−xNi0.1CrxAs2
    (Frontiers Media S.A., 2022) Gong, Dongliang; Yi, Ming; Wang, Meng; Xie, Tao; Zhang, Wenliang; Danilkin, Sergey; Deng, Guochu; Liu, Xinzhi; Park, Jitae T.; Ikeuchi, Kazuhiko; Kamazawa, Kazuya; Mo, Sung-Kwan; Hashimoto, Makoto; Lu, Donghui; Zhang, Rui; Dai, Pengcheng; Birgeneau, Robert J.; Li, Shiliang; Luo, Huiqian; Rice Center for Quantum Materials
    The main driven force of the electronic nematic phase in iron-based superconductors is still under debate. Here, we report a comprehensive study on the nematic fluctuations in a non-superconducting iron pnictide system BaFe1.9−xNi0.1CrxAs2 by electronic transport, angle-resolved photoemission spectroscopy (ARPES), and inelastic neutron scattering (INS) measurements. Previous neutron diffraction and transport measurements suggested that the collinear antiferromagnetism persists to x = 0.8, with similar Néel temperature TN and structural transition temperature Ts around 32 K, but the charge carriers change from electron type to hole type around x = 0.5. In this study, we have found that the in-plane resistivity anisotropy also highly depends on the Cr dopings and the type of charge carriers. While ARPES measurements suggest possibly weak orbital anisotropy onset near Ts for both x = 0.05 and x = 0.5 compounds, INS experiments reveal clearly different onset temperatures of low-energy spin excitation anisotropy, which is likely related to the energy scale of spin nematicity. These results suggest that the interplay between the local spins on Fe atoms and the itinerant electrons on Fermi surfaces is crucial to the nematic fluctuations of iron pnictides, where the orbital degree of freedom may behave differently from the spin degree of freedom, and the transport properties are intimately related to the spin dynamics.
  • Loading...
    Thumbnail Image
    Item
    Nonsymmorphic symmetry-protected band crossings in a square-net metal PtPb4
    (Springer Nature, 2022) Wu, Han; Hallas, Alannah M.; Cai, Xiaochan; Huang, Jianwei; Oh, Ji Seop; Loganathan, Vaideesh; Weiland, Ashley; McCandless, Gregory T.; Chan, Julia Y.; Mo, Sung-Kwan; Lu, Donghui; Hashimoto, Makoto; Denlinger, Jonathan; Birgeneau, Robert J.; Nevidomskyy, Andriy H.; Li, Gang; Morosan, Emilia; Yi, Ming; Rice Center for Quantum Materials
    Topological semimetals with symmetry-protected band crossings have emerged as a rich landscape to explore intriguing electronic phenomena. Nonsymmorphic symmetries in particular have been shown to play an important role in protecting the crossings along a line (rather than a point) in momentum space. Here we report experimental and theoretical evidence for Dirac nodal line crossings along the Brillouin zone boundaries in PtPb4, arising from the nonsymmorphic symmetry of its crystal structure. Interestingly, while the nodal lines would remain gapless in the absence of spin–orbit coupling (SOC), the SOC, in this case, plays a detrimental role to topology by lifting the band degeneracy everywhere except at a set of isolated points. Nevertheless, the nodal line is observed to have a bandwidth much smaller than that found in density functional theory (DFT). Our findings reveal PtPb4 to be a material system with narrow crossings approximately protected by nonsymmorphic crystalline symmetries.
  • Loading...
    Thumbnail Image
    Item
    Reversible non-volatile electronic switching in a near-room-temperature van der Waals ferromagnet
    (Springer Nature, 2024) Wu, Han; Chen, Lei; Malinowski, Paul; Jang, Bo Gyu; Deng, Qinwen; Scott, Kirsty; Huang, Jianwei; Ruff, Jacob P. C.; He, Yu; Chen, Xiang; Hu, Chaowei; Yue, Ziqin; Oh, Ji Seop; Teng, Xiaokun; Guo, Yucheng; Klemm, Mason; Shi, Chuqiao; Shi, Yue; Setty, Chandan; Werner, Tyler; Hashimoto, Makoto; Lu, Donghui; Yilmaz, Turgut; Vescovo, Elio; Mo, Sung-Kwan; Fedorov, Alexei; Denlinger, Jonathan D.; Xie, Yaofeng; Gao, Bin; Kono, Junichiro; Dai, Pengcheng; Han, Yimo; Xu, Xiaodong; Birgeneau, Robert J.; Zhu, Jian-Xin; da Silva Neto, Eduardo H.; Wu, Liang; Chu, Jiun-Haw; Si, Qimiao; Yi, Ming; Rice Center for Quantum Materials
    Non-volatile phase-change memory devices utilize local heating to toggle between crystalline and amorphous states with distinct electrical properties. Expanding on this kind of switching to two topologically distinct phases requires controlled non-volatile switching between two crystalline phases with distinct symmetries. Here, we report the observation of reversible and non-volatile switching between two stable and closely related crystal structures, with remarkably distinct electronic structures, in the near-room-temperature van der Waals ferromagnet Fe5−δGeTe2. We show that the switching is enabled by the ordering and disordering of Fe site vacancies that results in distinct crystalline symmetries of the two phases, which can be controlled by a thermal annealing and quenching method. The two phases are distinguished by the presence of topological nodal lines due to the preserved global inversion symmetry in the site-disordered phase, flat bands resulting from quantum destructive interference on a bipartite lattice, and broken inversion symmetry in the site-ordered phase.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892