Browsing by Author "Li, Shengtai"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Identifying Anticyclonic Vortex Features Produced by the Rossby Wave Instability in Protoplanetary Disks(IOP Publishing, 2018) Huang, Pinghui; Isella, Andrea; Li, Hui; Li, Shengtai; Ji, JianghuiSeveral nearby protoplanetary disks have been observed to display large-scale crescents in the (sub)millimeter dust continuum emission. One interpretation is that these structures correspond to anticyclonic vortices generated by the Rossby wave instability within the gaseous disk. Such vortices have local gas overdensities and are expected to concentrate dust particles with a Stokes number around unity. This process might catalyze the formation of planetesimals. Whereas recent observations showed that dust crescents are indeed regions where millimeter-size particles have abnormally high concentration relative to the gas and smaller grains, no observations have yet shown that the gas within the crescent region counterrotates with respect to the protoplanetary disk. Here we investigate the detectability of anticyclonic features through measurement of the line-of-sight component of the gas velocity obtained with ALMA. We carry out 2D hydrodynamic simulations and 3D radiative transfer calculations of a protoplanetary disk characterized by a vortex created by the tidal interaction with a massive planet. As a case study, the disk parameters are chosen to mimic the IRS 48 system, which has the most prominent crescent observed to date. We generate synthetic ALMA observations of both the dust continuum and 12CO emission around the frequency of 345 GHz. We find that the anticyclonic features of the vortex are weak but can be detected if both the source and the observational setup are properly chosen. We provide a recipe for maximizing the probability of detecting such vortex features and present an analysis procedure to infer their kinematic properties.Item New Constraints on Turbulence and Embedded Planet Mass in the HD 163296 Disk from Planet–Disk Hydrodynamic Simulations(IOP Publishing, 2018) Liu, Shang-Fei; Jin, Sheng; Li, Shengtai; Isella, Andrea; Li, HuiRecent Atacama Large Millimeter and Submillimeter Array (ALMA) observations of the protoplanetary disk around the Herbig Ae star HD 163296 revealed three depleted dust gaps at 60, 100, and 160 au in the 1.3 mm continuum as well as CO depletion in the middle and outer dust gaps. However, no CO depletion was found in the inner dust gap. To examine the planet–disk interaction model, we present results of 2D two fluid (gas + dust) hydrodynamic simulations coupled with 3D radiative transfer simulations. To fit the high gas-to-dust ratio of the first gap, we find that the Shakura–Sunyaev viscosity parameter α must be very small ($\lesssim {10}^{-4}$) in the inner disk. On the other hand, a relatively large α ($\sim 7.5\times {10}^{-3}$) is required to reproduce the dust surface density in the outer disk. We interpret the variation of α as an indicator of the transition from an inner dead zone to the outer magnetorotational instability (MRI) active zone. Within ~100 au, the HD 163296 disk's ionization level is low, and non-ideal magnetohydrodynamic effects could suppress the MRI, so the disk can be largely laminar. The disk's ionization level gradually increases toward larger radii, and the outermost disk ($r\gt 300$ au) becomes turbulent due to MRI. Under this condition, we find that the observed dust continuum and CO gas line emissions can be reasonably fit by three half-Jovian-mass planets (0.46, 0.46, and $0.58\,{M}_{{\rm{J}}}$) at 59, 105, and 160 au, respectively.Item Ringed Structures of the HD 163296 Protoplanetary Disk Revealed by ALMA(American Physical Society, 2016) Isella, Andrea; Guidi, Greta; Testi, Leonardo; Liu, Shangfei; Li, Hui; Li, Shengtai; Weaver, Erik; Boehler, Yann; Carperter, John M.; De Gregorio-Monsalvo, Itziar; Manara, Carlo F.; Natta, Antonella; Pérez, Laura M.; Ricci, Luca; Sargent, Anneila; Tazzari, Marco; Turner, NealWe present Atacama Large Millimeter and Submillimeter Array observations of the protoplanetary disk around the Herbig Ae star HD 163296 that trace the spatial distribution of millimeter-sized particles and cold molecular gas on spatial scales as small as 25 astronomical units (A.U.). The image of the disk recorded in the 1.3 mm continuum emission reveals three dark concentric rings that indicate the presence of dust depleted gaps at about 60, 100, and 160 A.U. from the central star. The maps of the 12CO, 13CO, and C18O J=2−1 emission do not show such structures but reveal a change in the slope of the radial intensity profile across the positions of the dark rings in the continuum image. By comparing the observations with theoretical models for the disk emission, we find that the density of CO molecules is reduced inside the middle and outer dust gaps. However, in the inner ring there is no evidence of CO depletion. From the measurements of the dust and gas densities, we deduce that the gas-to-dust ratio varies across the disk and, in particular, it increases by at least a factor 5 within the inner dust gap compared to adjacent regions of the disk. The depletion of both dust and gas suggests that the middle and outer rings could be due to the gravitational torque exerted by two Saturn-mass planets orbiting at 100 and 160 A.U. from the star. On the other hand, the inner dust gap could result from dust accumulation at the edge of a magnetorotational instability dead zone, or from dust opacity variations at the edge of the CO frost line. Observations of the dust emission at higher angular resolution and of molecules that probe dense gas are required to establish more precisely the origins of the dark rings observed in the HD 163296 disk.