Browsing by Author "Li, Bo"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Charge coupled device based on atomically layered van der waals solid state film for opto-electronic memory and image capture(2016-08-30) Lei, Sidong; Ge, Liehui; George, Antony; Li, Bo; Vajtai, Robert; Ajayan, Pulickel M.; Rice University; United States Patent and Trademark OfficeAn opto-electronic sensor may provide one or more layers of atomically layered photo-sensitive materials. The sensor may include a gate electrode layer, a dielectric layer in contact with the gate electrode layer, and a working media layer that is photo-sensitive deposited on the dielectric layer. The working media layer may provide one or more layers of one or more materials where each of the one or more layers is an atomic layer. The sensor may also include side electrodes in contact with the working media layer.Item Periodic Migration in a Physical Model of Cells on Micropatterns(American Physical Society, 2013) Camley, Brian A.; Zhao, Yanxiang; Li, Bo; Levine, Herbert; Rappel, Wouter-Jan; Center for Theoretical Biological PhysicsWe extend a model for the morphology and dynamics of a crawling eukaryotic cell to describe cells on micropatterned substrates. This model couples cell morphology, adhesion, and cytoskeletal flow in response to active stresses induced by actin and myosin. We propose that protrusive stresses are only generated where the cell adheres, leading to the cellメs effective confinement to the pattern. Consistent with experimental results, simulated cells exhibit a broad range of behaviors, including steady motion, turning, bipedal motion, and periodic migration, in which the cell crawls persistently in one direction before reversing periodically. We show that periodic motion emerges naturally from the coupling of cell polarization to cell shape by reducing the model to a simplified one-dimensional form that can be understood analytically.Item Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface(Macmillan Publishers Limited, 2015) Li, Bo; Wang, Xin; Jung, Hyun Young; Kim, Young Lae; Robinson, Jeremy T.; Zalalutdinov, Maxim; Hong, Sanghyun; Hao, Ji; Ajayan, Pulickel M.; Wan, Kai-Tak; Jung, Yung JoonItem Ternary CuIn7Se11: Towards Ultra-Thin Layered Photodetectors and Photovoltaic Devices(Wiley, 2014) Lei, Sidong; Sobhani, Ali; Wen, Fangfang; George, Antony; Wang, Qizhong; Huang, Yihan; Dong, Pei; Li, Bo; Najmaei, Sina; Bellah, James; Gupta, Gautam; Mohite, Aditya D.; Ge, Liehui; Lou, Jun; Halas, Naomi J.; Vajtai, Robert; Ajayan, Pulickel2D materials have been widely studied over the past decade for their potential applications in electronics and optoelectronics. In these materials, elemental composition plays a critical role in defining their physical properties. Here we report the first successful synthesis of individual high quality CuIn7Se11 (CIS) ternary 2D layers and demonstrate their potential use in photodetection applications. Photoconductivity measurements show an indirect bandgap of 1.1 eV for few-layered CIS, an external quantum efficiency of 88.0 % with 2 V bias across 2 μm channel with and a signal-to-noise ratio larger than 95 dB. By judicious choice of electrode materials, we demonstrate the possibility of layered CIS-based 2D photovoltaic devices. This study examines this ternary 2D layered system for the first time, demonstrating the clear potential for layered CIS in 2D material-based optoelectronic device applications.Item Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes(Springer Nature, 2016) He, Xiaowei; Gao, Weilu; Xie, Lijuan; Li, Bo; Zhang, Qi; Lei, Sidong; Robinson, John M.; Hároz, Erik H.; Doorn, Stephen K.; Wang, Weipeng; Vajtai, Robert; Ajayan, Pulickel M.; Adams, W. Wade; Hauge, Robert H.; Kono, JunichiroThe one-dimensional character of electrons, phonons and excitons in individual single-walled carbon nanotubes leads to extremely anisotropic electronic, thermal and optical properties. However, despite significant efforts to develop ways to produce large-scale architectures of aligned nanotubes, macroscopic manifestations of such properties remain limited. Here, we show that large (>cm2) monodomain films of aligned single-walled carbon nanotubes can be prepared using slow vacuum filtration. The produced films are globally aligned within ±1.5° (a nematic order parameter of ∼1) and are highly packed, containing 1 × 106 nanotubes in a cross-sectional area of 1 μm2. The method works for nanotubes synthesized by various methods, and film thickness is controllable from a few nanometres to ∼100 nm. We use the approach to create ideal polarizers in the terahertz frequency range and, by combining the method with recently developed sorting techniques, highly aligned and chirality-enriched nanotube thin-film devices. Semiconductor-enriched devices exhibit polarized light emission and polarization-dependent photocurrent, as well as anisotropic conductivities and transistor action with high on/off ratios.