Browsing by Author "Johnston, Adam"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Cavity-coupled telecom atomic source in silicon(Springer Nature, 2024) Johnston, Adam; Felix-Rendon, Ulises; Wong, Yu-En; Chen, Songtao; Smalley-Curl InstituteNovel T centers in silicon hold great promise for quantum networking applications due to their telecom band optical transitions and the long-lived ground state electronic spins. An open challenge for advancing the T center platform is to enhance its weak and slow zero phonon line (ZPL) emission. In this work, by integrating single T centers with a low-loss, small mode-volume silicon photonic crystal cavity, we demonstrate an enhancement of the fluorescence decay rate by a factor of F = 6.89. Efficient photon extraction enables the system to achieve an average ZPL photon outcoupling rate of 73.3 kHz under saturation, which is about two orders of magnitude larger than the previously reported value. The dynamics of the coupled system is well modeled by solving the Lindblad master equation. These results represent a significant step towards building efficient T center spin-photon interfaces for quantum information processing and networking applications.Item Purcell Enhancement of a single T center in a silicon nanophotonic cavity(2024-07-25) Johnston, Adam; Chen, SongtaoImplementation of large-scale quantum networks have the potential to augment the capabilities of existing quantum information technologies. By linking quantum processors over photonic channels, future quantum networks could enable applications such as remote quantum sensing, distributed quantum computing, and secure quantum communication. Atomic defects in solids are readily integrated with photonic structures, making them promising candidates for use in quantum networking devices. In particular, the silicon material platform holds great promise due to the technologically mature silicon electronic and photonic industries. The T center defects in silicon possess telecom O-band optical transitions, as well as long-lived electronic and nuclear spins, making it the focus of particular interest. These spin and optical properties of single T centers, together with their accessibility to the existing integrated electronic and photonic technologies, opening the door to modular long-distance quantum networking technologies built on the T center platform. This work outlines the integration of single T centers with a silicon photonic crystal cavity; we observe cavity-enhanced fluorescence emission, resulting in a decay rate enhancement factor of F = 6.89 compared to the bulk emission rate. Through the use of silicon photonic circuits and an angle-polished fiber for light coupling, we achieve a maximum zero phonon line photon outcoupling rate of 73.3 kHz. The design and fabrication of the nanophotonic cavity used in experiment is detailed. This work represents a major step towards use of the silicon T center as a telecom spin-photon interface in future quantum networking applications.