Browsing by Author "Jain, Mudit"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Engineering and revealing Dirac strings in spinor condensates(American Physical Society, 2024) Xu, Gui-Sheng; Jain, Mudit; Zhou, Xiang-Fa; Guo, Guang-Can; Amin, Mustafa A.; Pu, Han; Zhou, Zheng-WeiArtificial monopoles have been engineered in various systems, yet there has been no systematic study of the singular vector potentials associated with the monopole field. We show that the Dirac string, the line singularity of the vector potential, can be engineered, manipulated, and made manifest in a spinor atomic condensate. We elucidate the connection among spin, orbital degrees of freedom, and the artificial gauge, and show that there exists a mapping between the vortex filament and the Dirac string. We also devise a proposal where preparing initial spin states with relevant symmetries can result in different vortex patterns, revealing an underlying correspondence between the internal spin states and the spherical vortex structures. Such a mapping also leads to a new way of constructing spherical Landau levels, and monopole harmonics. Our observation provides insights into the behavior of quantum matter possessing internal symmetries in curved spaces.Item Polarized solitons in higher-spin wave dark matter(American Physical Society, 2022) Jain, Mudit; Amin, Mustafa A.We first show that the effective nonrelativistic theory of gravitationally interacting, massive integer-spin fields (spin-0, 1, and 2 in particular) is described by a 2s+1 component Schrödinger-Poisson action, where s is the spin of the field. We then construct s+1 distinct, gravitationally supported solitons in this nonrelativistic theory from identically polarized plane waves. Such solitons are extremally polarized, with macroscopically large spin, but no orbital angular momentum. These s+1 solitons form a basis set, out of which partially polarized solitons can be constructed. All such solitons are ground states, have a spherically symmetric energy density but not field configurations. We discuss how solitons in higher-spin fields can be distinguished from scalar solitons, and potential gravitational and nongravitational probes of them.