Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Huang, Jianwei"

Now showing 1 - 8 of 8
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Correlation-driven electronic reconstruction in FeTe1−xSex
    (Springer Nature, 2022) Huang, Jianwei; Yu, Rong; Xu, Zhijun; Zhu, Jian-Xin; Oh, Ji Seop; Jiang, Qianni; Wang, Meng; Wu, Han; Chen, Tong; Denlinger, Jonathan D.; Mo, Sung-Kwan; Hashimoto, Makoto; Michiardi, Matteo; Pedersen, Tor M.; Gorovikov, Sergey; Zhdanovich, Sergey; Damascelli, Andrea; Gu, Genda; Dai, Pengcheng; Chu, Jiun-Haw; Lu, Donghui; Si, Qimiao; Birgeneau, Robert J.; Yi, Ming; Rice Center for Quantum Materials
    Electronic correlation is of fundamental importance to high temperature superconductivity. While the low energy electronic states in cuprates are dominantly affected by correlation effects across the phase diagram, observation of correlation-driven changes in fermiology amongst the iron-based superconductors remains rare. Here we present experimental evidence for a correlation-driven reconstruction of the Fermi surface tuned independently by two orthogonal axes of temperature and Se/Te ratio in the iron chalcogenide family FeTe1−xSex. We demonstrate that this reconstruction is driven by the de-hybridization of a strongly renormalized dxy orbital with the remaining itinerant iron 3d orbitals in the emergence of an orbital-selective Mott phase. Our observations are further supported by our theoretical calculations to be salient spectroscopic signatures of such a non-thermal evolution from a strongly correlated metallic phase into an orbital-selective Mott phase in dxy as Se concentration is reduced.
  • Loading...
    Thumbnail Image
    Item
    Kramers nodal lines and Weyl fermions in SmAlSi
    (Springer Nature, 2023) Zhang, Yichen; Gao, Yuxiang; Gao, Xue-Jian; Lei, Shiming; Ni, Zhuoliang; Oh, Ji Seop; Huang, Jianwei; Yue, Ziqin; Zonno, Marta; Gorovikov, Sergey; Hashimoto, Makoto; Lu, Donghui; Denlinger, Jonathan D.; Birgeneau, Robert J.; Kono, Junichiro; Wu, Liang; Law, Kam Tuen; Morosan, Emilia; Yi, Ming
    Kramers nodal lines (KNLs) have recently been proposed theoretically as a special type of Weyl line degeneracy connecting time-reversal invariant momenta. KNLs are robust to spin orbit coupling and are inherent to all non-centrosymmetric achiral crystal structures, leading to unusual spin, magneto-electric, and optical properties. However, their existence in in real quantum materials has not been experimentally established. Here we gather the experimental evidence pointing at the presence of KNLs in SmAlSi, a non-centrosymmetric metal that develops incommensurate spin density wave order at low temperature. Using angle-resolved photoemission spectroscopy, density functional theory calculations, and magneto-transport methods, we provide evidence suggesting the presence of KNLs, together with observing Weyl fermions under the broken inversion symmetry in the paramagnetic phase of SmAlSi. We discuss the nesting possibilities regarding the emergent magnetic orders in SmAlSi. Our results provide a solid basis of experimental observations for exploring correlated topology in SmAlSi
  • Loading...
    Thumbnail Image
    Item
    Nonsymmorphic symmetry-protected band crossings in a square-net metal PtPb4
    (Springer Nature, 2022) Wu, Han; Hallas, Alannah M.; Cai, Xiaochan; Huang, Jianwei; Oh, Ji Seop; Loganathan, Vaideesh; Weiland, Ashley; McCandless, Gregory T.; Chan, Julia Y.; Mo, Sung-Kwan; Lu, Donghui; Hashimoto, Makoto; Denlinger, Jonathan; Birgeneau, Robert J.; Nevidomskyy, Andriy H.; Li, Gang; Morosan, Emilia; Yi, Ming; Rice Center for Quantum Materials
    Topological semimetals with symmetry-protected band crossings have emerged as a rich landscape to explore intriguing electronic phenomena. Nonsymmorphic symmetries in particular have been shown to play an important role in protecting the crossings along a line (rather than a point) in momentum space. Here we report experimental and theoretical evidence for Dirac nodal line crossings along the Brillouin zone boundaries in PtPb4, arising from the nonsymmorphic symmetry of its crystal structure. Interestingly, while the nodal lines would remain gapless in the absence of spin–orbit coupling (SOC), the SOC, in this case, plays a detrimental role to topology by lifting the band degeneracy everywhere except at a set of isolated points. Nevertheless, the nodal line is observed to have a bandwidth much smaller than that found in density functional theory (DFT). Our findings reveal PtPb4 to be a material system with narrow crossings approximately protected by nonsymmorphic crystalline symmetries.
  • Loading...
    Thumbnail Image
    Item
    Observation of flat bands and Dirac cones in a pyrochlore lattice superconductor
    (Springer Nature, 2024) Huang, Jianwei; Setty, Chandan; Deng, Liangzi; You, Jing-Yang; Liu, Hongxiong; Shao, Sen; Oh, Ji Seop; Guo, Yucheng; Zhang, Yichen; Yue, Ziqin; Yin, Jia-Xin; Hashimoto, Makoto; Lu, Donghui; Gorovikov, Sergey; Dai, Pengcheng; Denlinger, Jonathan D.; Allen, J. W.; Hasan, M. Zahid; Feng, Yuan-Ping; Birgeneau, Robert J.; Shi, Youguo; Chu, Ching-Wu; Chang, Guoqing; Si, Qimiao; Yi, Ming; Rice Center for Quantum Materials
    Emergent phases often appear when the electronic kinetic energy is comparable to the Coulomb interactions. One approach to seek material systems as hosts of such emergent phases is to realize localization of electronic wavefunctions due to the geometric frustration inherent in the crystal structure, resulting in flat electronic bands. Recently, such efforts have found a wide range of exotic phases in the two-dimensional kagome lattice, including magnetic order, time-reversal symmetry breaking charge order, nematicity, and superconductivity. However, the interlayer coupling of the kagome layers disrupts the destructive interference needed to completely quench the kinetic energy. Here we demonstrate that an interwoven kagome network—a pyrochlore lattice—can host a three dimensional (3D) localization of electron wavefunctions. Meanwhile, the nonsymmorphic symmetry of the pyrochlore lattice guarantees all band crossings at the Brillouin zone X point to be 3D gapless Dirac points, which was predicted theoretically but never yet observed experimentally. Through a combination of angle-resolved photoemission spectroscopy, fundamental lattice model and density functional theory calculations, we investigate the novel electronic structure of a Laves phase superconductor with a pyrochlore sublattice, CeRu2. We observe evidence of flat bands originating from the Ce 4f orbitals as well as flat bands from the 3D destructive interference of the Ru 4d orbitals. We further observe the nonsymmorphic symmetry-protected 3D gapless Dirac cone at the X point. Our work establishes the pyrochlore structure as a promising lattice platform to realize and tune novel emergent phases intertwining topology and many-body interactions.
  • Loading...
    Thumbnail Image
    Item
    Persistent flat band splitting and strong selective band renormalization in a kagome magnet thin film
    (Springer Nature, 2024) Ren, Zheng; Huang, Jianwei; Tan, Hengxin; Biswas, Ananya; Pulkkinen, Aki; Zhang, Yichen; Xie, Yaofeng; Yue, Ziqin; Chen, Lei; Xie, Fang; Allen, Kevin; Wu, Han; Ren, Qirui; Rajapitamahuni, Anil; Kundu, Asish K.; Vescovo, Elio; Kono, Junichiro; Morosan, Emilia; Dai, Pengcheng; Zhu, Jian-Xin; Si, Qimiao; Minár, Ján; Yan, Binghai; Yi, Ming; Smalley-Curl Institute
    Magnetic kagome materials provide a fascinating playground for exploring the interplay of magnetism, correlation and topology. Many magnetic kagome systems have been reported including the binary FemXn (X = Sn, Ge; m:n = 3:1, 3:2, 1:1) family and the rare earth RMn6Sn6 (R = rare earth) family, where their kagome flat bands are calculated to be near the Fermi level in the paramagnetic phase. While partially filling a kagome flat band is predicted to give rise to a Stoner-type ferromagnetism, experimental visualization of the magnetic splitting across the ordering temperature has not been reported for any of these systems due to the high ordering temperatures, hence leaving the nature of magnetism in kagome magnets an open question. Here, we probe the electronic structure with angle-resolved photoemission spectroscopy in a kagome magnet thin film FeSn synthesized using molecular beam epitaxy. We identify the exchange-split kagome flat bands, whose splitting persists above the magnetic ordering temperature, indicative of a local moment picture. Such local moments in the presence of the topological flat band are consistent with the compact molecular orbitals predicted in theory. We further observe a large spin-orbital selective band renormalization in the Fe $${{{{\rm{d}}}}}_{{xy}}+{{{{\rm{d}}}}}_{{x}^{2}-{y}^{2}}$$spin majority channel reminiscent of the orbital selective correlation effects in the iron-based superconductors. Our discovery of the coexistence of local moments with topological flat bands in a kagome system echoes similar findings in magic-angle twisted bilayer graphene, and provides a basis for theoretical effort towards modeling correlation effects in magnetic flat band systems.
  • Loading...
    Thumbnail Image
    Item
    Reversible non-volatile electronic switching in a near-room-temperature van der Waals ferromagnet
    (Springer Nature, 2024) Wu, Han; Chen, Lei; Malinowski, Paul; Jang, Bo Gyu; Deng, Qinwen; Scott, Kirsty; Huang, Jianwei; Ruff, Jacob P. C.; He, Yu; Chen, Xiang; Hu, Chaowei; Yue, Ziqin; Oh, Ji Seop; Teng, Xiaokun; Guo, Yucheng; Klemm, Mason; Shi, Chuqiao; Shi, Yue; Setty, Chandan; Werner, Tyler; Hashimoto, Makoto; Lu, Donghui; Yilmaz, Turgut; Vescovo, Elio; Mo, Sung-Kwan; Fedorov, Alexei; Denlinger, Jonathan D.; Xie, Yaofeng; Gao, Bin; Kono, Junichiro; Dai, Pengcheng; Han, Yimo; Xu, Xiaodong; Birgeneau, Robert J.; Zhu, Jian-Xin; da Silva Neto, Eduardo H.; Wu, Liang; Chu, Jiun-Haw; Si, Qimiao; Yi, Ming; Rice Center for Quantum Materials
    Non-volatile phase-change memory devices utilize local heating to toggle between crystalline and amorphous states with distinct electrical properties. Expanding on this kind of switching to two topologically distinct phases requires controlled non-volatile switching between two crystalline phases with distinct symmetries. Here, we report the observation of reversible and non-volatile switching between two stable and closely related crystal structures, with remarkably distinct electronic structures, in the near-room-temperature van der Waals ferromagnet Fe5−δGeTe2. We show that the switching is enabled by the ordering and disordering of Fe site vacancies that results in distinct crystalline symmetries of the two phases, which can be controlled by a thermal annealing and quenching method. The two phases are distinguished by the presence of topological nodal lines due to the preserved global inversion symmetry in the site-disordered phase, flat bands resulting from quantum destructive interference on a bipartite lattice, and broken inversion symmetry in the site-ordered phase.
  • Loading...
    Thumbnail Image
    Item
    Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi4I4
    (American Physical Society, 2021) Huang, Jianwei; Li, Sheng; Yoon, Chiho; Oh, Ji Seop; Wu, Han; Liu, Xiaoyuan; Dhale, Nikhil; Zhou, Yan-Feng; Guo, Yucheng; Zhang, Yichen; Hashimoto, Makoto; Lu, Donghui; Denlinger, Jonathan; Wang, Xiqu; Lau, Chun Ning; Birgeneau, Robert J.; Zhang, Fan; Lv, Bing; Yi, Ming
    Quasi-one-dimensional (1D) materials provide a superior platform for characterizing and tuning topological phases for two reasons: (i) existence for multiple cleavable surfaces that enables better experimental identification of topological classification and (ii) stronger response to perturbations such as strain for tuning topological phases compared to higher dimensional crystal structures. In this paper, we present experimental evidence for a room-temperature topological phase transition in the quasi-1D material Bi4I4, mediated via a first-order structural transition between two distinct stacking orders of the weakly coupled chains. Using high-resolution angle-resolved photoemission spectroscopy on the two natural cleavable surfaces, we identify the high-temperature β phase to be the first weak topological insulator with two gapless Dirac cones on the (100) surface and no Dirac crossing on the (001) surface, while in the low-temperature α phase, the topological surface state on the (100) surface opens a gap, consistent with a recent theoretical prediction of a higher-order topological insulator beyond the scope of the established topological materials databases that hosts gapless hinge states. Our results not only identify a rare topological phase transition between first-order and second-order topological insulators but also establish a novel quasi-1D material platform for exploring unprecedented physics.
  • Loading...
    Thumbnail Image
    Item
    Weyl nodal ring states and Landau quantization with very large magnetoresistance in square-net magnet EuGa4
    (Springer Nature, 2023) Lei, Shiming; Allen, Kevin; Huang, Jianwei; Moya, Jaime M.; Wu, Tsz Chun; Casas, Brian; Zhang, Yichen; Oh, Ji Seop; Hashimoto, Makoto; Lu, Donghui; Denlinger, Jonathan; Jozwiak, Chris; Bostwick, Aaron; Rotenberg, Eli; Balicas, Luis; Birgeneau, Robert; Foster, Matthew S.; Yi, Ming; Sun, Yan; Morosan, Emilia; Rice Center for Quantum Materials
    Magnetic topological semimetals allow for an effective control of the topological electronic states by tuning the spin configuration. Among them, Weyl nodal line semimetals are thought to have the greatest tunability, yet they are the least studied experimentally due to the scarcity of material candidates. Here, using a combination of angle-resolved photoemission spectroscopy and quantum oscillation measurements, together with density functional theory calculations, we identify the square-net compound EuGa4 as a magnetic Weyl nodal ring semimetal, in which the line nodes form closed rings near the Fermi level. The Weyl nodal ring states show distinct Landau quantization with clear spin splitting upon application of a magnetic field. At 2 K in a field of 14 T, the transverse magnetoresistance of EuGa4 exceeds 200,000%, which is more than two orders of magnitude larger than that of other known magnetic topological semimetals. Our theoretical model suggests that the non-saturating magnetoresistance up to 40 T arises as a consequence of the nodal ring state.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892