Browsing by Author "Gorovikov, Sergey"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Correlation-driven electronic reconstruction in FeTe1−xSex(Springer Nature, 2022) Huang, Jianwei; Yu, Rong; Xu, Zhijun; Zhu, Jian-Xin; Oh, Ji Seop; Jiang, Qianni; Wang, Meng; Wu, Han; Chen, Tong; Denlinger, Jonathan D.; Mo, Sung-Kwan; Hashimoto, Makoto; Michiardi, Matteo; Pedersen, Tor M.; Gorovikov, Sergey; Zhdanovich, Sergey; Damascelli, Andrea; Gu, Genda; Dai, Pengcheng; Chu, Jiun-Haw; Lu, Donghui; Si, Qimiao; Birgeneau, Robert J.; Yi, Ming; Rice Center for Quantum MaterialsElectronic correlation is of fundamental importance to high temperature superconductivity. While the low energy electronic states in cuprates are dominantly affected by correlation effects across the phase diagram, observation of correlation-driven changes in fermiology amongst the iron-based superconductors remains rare. Here we present experimental evidence for a correlation-driven reconstruction of the Fermi surface tuned independently by two orthogonal axes of temperature and Se/Te ratio in the iron chalcogenide family FeTe1−xSex. We demonstrate that this reconstruction is driven by the de-hybridization of a strongly renormalized dxy orbital with the remaining itinerant iron 3d orbitals in the emergence of an orbital-selective Mott phase. Our observations are further supported by our theoretical calculations to be salient spectroscopic signatures of such a non-thermal evolution from a strongly correlated metallic phase into an orbital-selective Mott phase in dxy as Se concentration is reduced.Item Kramers nodal lines and Weyl fermions in SmAlSi(Springer Nature, 2023) Zhang, Yichen; Gao, Yuxiang; Gao, Xue-Jian; Lei, Shiming; Ni, Zhuoliang; Oh, Ji Seop; Huang, Jianwei; Yue, Ziqin; Zonno, Marta; Gorovikov, Sergey; Hashimoto, Makoto; Lu, Donghui; Denlinger, Jonathan D.; Birgeneau, Robert J.; Kono, Junichiro; Wu, Liang; Law, Kam Tuen; Morosan, Emilia; Yi, MingKramers nodal lines (KNLs) have recently been proposed theoretically as a special type of Weyl line degeneracy connecting time-reversal invariant momenta. KNLs are robust to spin orbit coupling and are inherent to all non-centrosymmetric achiral crystal structures, leading to unusual spin, magneto-electric, and optical properties. However, their existence in in real quantum materials has not been experimentally established. Here we gather the experimental evidence pointing at the presence of KNLs in SmAlSi, a non-centrosymmetric metal that develops incommensurate spin density wave order at low temperature. Using angle-resolved photoemission spectroscopy, density functional theory calculations, and magneto-transport methods, we provide evidence suggesting the presence of KNLs, together with observing Weyl fermions under the broken inversion symmetry in the paramagnetic phase of SmAlSi. We discuss the nesting possibilities regarding the emergent magnetic orders in SmAlSi. Our results provide a solid basis of experimental observations for exploring correlated topology in SmAlSiItem Observation of flat bands and Dirac cones in a pyrochlore lattice superconductor(Springer Nature, 2024) Huang, Jianwei; Setty, Chandan; Deng, Liangzi; You, Jing-Yang; Liu, Hongxiong; Shao, Sen; Oh, Ji Seop; Guo, Yucheng; Zhang, Yichen; Yue, Ziqin; Yin, Jia-Xin; Hashimoto, Makoto; Lu, Donghui; Gorovikov, Sergey; Dai, Pengcheng; Denlinger, Jonathan D.; Allen, J. W.; Hasan, M. Zahid; Feng, Yuan-Ping; Birgeneau, Robert J.; Shi, Youguo; Chu, Ching-Wu; Chang, Guoqing; Si, Qimiao; Yi, Ming; Rice Center for Quantum MaterialsEmergent phases often appear when the electronic kinetic energy is comparable to the Coulomb interactions. One approach to seek material systems as hosts of such emergent phases is to realize localization of electronic wavefunctions due to the geometric frustration inherent in the crystal structure, resulting in flat electronic bands. Recently, such efforts have found a wide range of exotic phases in the two-dimensional kagome lattice, including magnetic order, time-reversal symmetry breaking charge order, nematicity, and superconductivity. However, the interlayer coupling of the kagome layers disrupts the destructive interference needed to completely quench the kinetic energy. Here we demonstrate that an interwoven kagome network—a pyrochlore lattice—can host a three dimensional (3D) localization of electron wavefunctions. Meanwhile, the nonsymmorphic symmetry of the pyrochlore lattice guarantees all band crossings at the Brillouin zone X point to be 3D gapless Dirac points, which was predicted theoretically but never yet observed experimentally. Through a combination of angle-resolved photoemission spectroscopy, fundamental lattice model and density functional theory calculations, we investigate the novel electronic structure of a Laves phase superconductor with a pyrochlore sublattice, CeRu2. We observe evidence of flat bands originating from the Ce 4f orbitals as well as flat bands from the 3D destructive interference of the Ru 4d orbitals. We further observe the nonsymmorphic symmetry-protected 3D gapless Dirac cone at the X point. Our work establishes the pyrochlore structure as a promising lattice platform to realize and tune novel emergent phases intertwining topology and many-body interactions.