Browsing by Author "Gao, Bin"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Anisotropic magnon damping by zero-temperature quantum fluctuations in ferromagnetic CrGeTe3(Springer Nature, 2022) Chen, Lebing; Mao, Chengjie; Chung, Jae-Ho; Stone, Matthew B.; Kolesnikov, Alexander I.; Wang, Xiaoping; Murai, Naoki; Gao, Bin; Delaire, Olivier; Dai, PengchengSpin and lattice are two fundamental degrees of freedom in a solid, and their fluctuations about the equilibrium values in a magnetic ordered crystalline lattice form quasiparticles termed magnons (spin waves) and phonons (lattice waves), respectively. In most materials with strong spin-lattice coupling (SLC), the interaction of spin and lattice induces energy gaps in the spin wave dispersion at the nominal intersections of magnon and phonon modes. Here we use neutron scattering to show that in the two-dimensional (2D) van der Waals honeycomb lattice ferromagnetic CrGeTe3, spin waves propagating within the 2D plane exhibit an anomalous dispersion, damping, and breakdown of quasiparticle conservation, while magnons along the c axis behave as expected for a local moment ferromagnet. These results indicate the presence of dynamical SLC arising from the zero-temperature quantum fluctuations in CrGeTe3, suggesting that the observed in-plane spin waves are mixed spin and lattice quasiparticles fundamentally different from pure magnons and phonons.Item Diffusive excitonic bands from frustrated triangular sublattice in a singlet-ground-state system(Springer Nature, 2023) Gao, Bin; Chen, Tong; Wu, Xiao-Chuan; Flynn, Michael; Duan, Chunruo; Chen, Lebing; Huang, Chien-Lung; Liebman, Jesse; Li, Shuyi; Ye, Feng; Stone, Matthew B.; Podlesnyak, Andrey; Abernathy, Douglas L.; Adroja, Devashibhai T.; Duc Le, Manh; Huang, Qingzhen; Nevidomskyy, Andriy H.; Morosan, Emilia; Balents, Leon; Dai, PengchengMagnetic order in most materials occurs when magnetic ions with finite moments arrange in a particular pattern below the ordering temperature. Intriguingly, if the crystal electric field (CEF) effect results in a spin-singlet ground state, a magnetic order can still occur due to the exchange interactions between neighboring ions admixing the excited CEF levels. The magnetic excitations in such a state are spin excitons generally dispersionless in reciprocal space. Here we use neutron scattering to study stoichiometric Ni2Mo3O8, where Ni2+ ions form a bipartite honeycomb lattice comprised of two triangular lattices, with ions subject to the tetrahedral and octahedral crystalline environment, respectively. We find that in both types of ions, the CEF excitations have nonmagnetic singlet ground states, yet the material has magnetic order. Furthermore, CEF spin excitons from the tetrahedral sites form a dispersive diffusive pattern around the Brillouin zone boundary, likely due to spin entanglement and geometric frustrations.Item Magnetic Field Effect on Topological Spin Excitations in CrI3(American Physical Society, 2021) Chen, Lebing; Chung, Jae-Ho; Stone, Matthew B.; Kolesnikov, Alexander I.; Winn, Barry; Garlea, V. Ovidiu; Abernathy, Douglas L.; Gao, Bin; Augustin, Mathias; Santos, Elton J. G.; Dai, PengchengThe search for topological spin excitations in recently discovered two-dimensional (2D) van der Waals (vdW) magnetic materials is important because of their potential applications in dissipationless spintronics. In the 2D vdW ferromagnetic (FM) honeycomb lattice CrI3 (TC=61 K), acoustic and optical spin waves are found to be separated by a gap at the Dirac points. The presence of such a gap is a signature of topological spin excitations if it arises from the next-nearest-neighbor (NNN) Dzyaloshinskii-Moriya (DM) or bond-angle-dependent Kitaev interactions within the Cr honeycomb lattice. Alternatively, the gap is suggested to arise from an electron correlation effect not associated with topological spin excitations. Here, we use inelastic neutron scattering to conclusively demonstrate that the Kitaev interactions and electron correlation effects cannot describe spin waves, Dirac gaps, and their in-plane magnetic field dependence. Our results support the idea that the DM interactions are the microscopic origin of the observed Dirac gap. Moreover, we find that the nearest-neighbor (NN) magnetic exchange interactions along the c axis are antiferromagnetic (AF), and the NNN interactions are FM. Therefore, our results unveil the origin of the observed c-axis AF order in thin layers of CrI3, firmly determine the microscopic spin interactions in bulk CrI3, and provide a new understanding of topology-driven spin excitations in 2D vdW magnets.Item Magnetic field effects in an octupolar quantum spin liquid candidate(American Physical Society, 2022) Gao, Bin; Chen, Tong; Yan, Han; Duan, Chunruo; Huang, Chien-Lung; Yao, Xu Ping; Ye, Feng; Balz, Christian; Stewart, J. Ross; Nakajima, Kenji; Ohira-Kawamura, Seiko; Xu, Guangyong; Xu, Xianghan; Cheong, Sang-Wook; Morosan, Emilia; Nevidomskyy, Andriy H.; Chen, Gang; Dai, PengchengQuantum spin liquid (QSL) is a disordered state of quantum-mechanically entangled spins commonly arising from frustrated magnetic dipolar interactions. However, QSL in some pyrochlore magnets can also come from frustrated magnetic octupolar interactions. Although the key signature for both dipolar and octupolar interaction-driven QSL is the presence of a spin excitation continuum (spinons) arising from the spin quantum number fractionalization, an external magnetic field-induced ferromagnetic order will transform the spinons into conventional spin waves in a dipolar QSL. By contrast, in an octupole QSL, the spin waves carry octupole moments that do not couple, in the leading order, to an external magnetic field or to neutron moments but will contribute to the field dependence of the heat capacity. Here we use neutron scattering to show that the application of a large external magnetic field to Ce2Zr2O7, an octupolar QSL candidate, induces an Anderson-Higgs transition by condensing the spinons into a static ferromagnetic ordered state with octupolar spin waves invisible to neutrons but contributing to the heat capacity. Our theoretical calculations also provide a microscopic, qualitative understanding for the presence of octupole scattering at large wave vectors in Ce2Sn2O7 pyrochlore, and its absence in Ce2Zr2O7. Therefore, our results identify Ce2Zr2O7 as a strong candidate for an octupolar U(1) QSL, establishing that frustrated magnetic octupolar interactions are responsible for QSL properties in Ce-based pyrochlore magnets.Item Reversible non-volatile electronic switching in a near-room-temperature van der Waals ferromagnet(Springer Nature, 2024) Wu, Han; Chen, Lei; Malinowski, Paul; Jang, Bo Gyu; Deng, Qinwen; Scott, Kirsty; Huang, Jianwei; Ruff, Jacob P. C.; He, Yu; Chen, Xiang; Hu, Chaowei; Yue, Ziqin; Oh, Ji Seop; Teng, Xiaokun; Guo, Yucheng; Klemm, Mason; Shi, Chuqiao; Shi, Yue; Setty, Chandan; Werner, Tyler; Hashimoto, Makoto; Lu, Donghui; Yilmaz, Turgut; Vescovo, Elio; Mo, Sung-Kwan; Fedorov, Alexei; Denlinger, Jonathan D.; Xie, Yaofeng; Gao, Bin; Kono, Junichiro; Dai, Pengcheng; Han, Yimo; Xu, Xiaodong; Birgeneau, Robert J.; Zhu, Jian-Xin; da Silva Neto, Eduardo H.; Wu, Liang; Chu, Jiun-Haw; Si, Qimiao; Yi, Ming; Rice Center for Quantum MaterialsNon-volatile phase-change memory devices utilize local heating to toggle between crystalline and amorphous states with distinct electrical properties. Expanding on this kind of switching to two topologically distinct phases requires controlled non-volatile switching between two crystalline phases with distinct symmetries. Here, we report the observation of reversible and non-volatile switching between two stable and closely related crystal structures, with remarkably distinct electronic structures, in the near-room-temperature van der Waals ferromagnet Fe5−δGeTe2. We show that the switching is enabled by the ordering and disordering of Fe site vacancies that results in distinct crystalline symmetries of the two phases, which can be controlled by a thermal annealing and quenching method. The two phases are distinguished by the presence of topological nodal lines due to the preserved global inversion symmetry in the site-disordered phase, flat bands resulting from quantum destructive interference on a bipartite lattice, and broken inversion symmetry in the site-ordered phase.Item Spin structure and dynamics of the topological semimetal Co3Sn2-xInxS2(Springer Nature, 2022) Neubauer, Kelly J.; Ye, Feng; Shi, Yue; Malinowski, Paul; Gao, Bin; Taddei, Keith M.; Bourges, Philippe; Ivanov, Alexandre; Chu, Jiun-Haw; Dai, PengchengThe anomalous Hall effect (AHE), typically observed in ferromagnetic (FM) metals with broken time-reversal symmetry, depends on electronic and magnetic properties. In Co3Sn2-xInxS2, a giant AHE has been attributed to Berry curvature associated with the FM Weyl semimetal phase, yet recent studies report complicated magnetism. We use neutron scattering to determine the spin dynamics and structures as a function of x and provide a microscopic understanding of the AHE and magnetism interplay. Spin gap and stiffness indicate a contribution from Weyl fermions consistent with the AHE. The magnetic structure evolves from c-axis ferromagnetism at $$x = 0$$to a canted antiferromagnetic (AFM) structure with reduced c-axis moment and in-plane AFM order at $$x = 0.12$$and further reduced c-axis FM moment at $$x = 0.3$$. Since noncollinear spins can induce non-zero Berry curvature in real space acting as a fictitious magnetic field, our results revealed another AHE contribution, establishing the impact of magnetism on transport.Item Spin waves and Dirac magnons in a honeycomb-lattice zigzag antiferromagnet BaNi2(AsO4)2(American Physical Society, 2021) Gao, Bin; Chen, Tong; Wang, Chong; Chen, Lebing; Zhong, Ruidan; Abernathy, Douglas L.; Xiao, Di; Dai, PengchengThe topological properties of massive and massless fermionic quasiparticles have been intensively investigated over the past decade in topological materials without magnetism. Recently, the bosonic analogs of such quasiparticles arising from spin waves have been reported in a two-dimensional (2D) honeycomb-lattice ferromagnet/antiferromagnet and a 3D antiferromagnet. Here, we use time-of-flight inelastic neutron scattering to study spin waves of the S=1 honeycomb-lattice antiferromagnet BaNi2(AsO4)2, which has a zigzag antiferromagnetic (AFM) ground state identical to that of the Kitaev quantum spin liquid candidate α−RuCl3. We determine the magnetic exchange interactions in the zigzag AFM ordered phase, and show that spin waves in BaNi2(AsO4)2 have symmetry-protected Dirac points inside the Brillouin zone boundary. These results provide a microscopic understanding of the zigzag AFM order and associated Dirac magnons in honeycomb-lattice magnets, and are also important for establishing the magnetic interactions in Kitaev quantum spin liquid candidates.Item Symmetry Breaking and Ascending in the Magnetic Kagome Metal FeGe(American Physical Society, 2024) Wu, Shangfei; Klemm, Mason L.; Shah, Jay; Ritz, Ethan T.; Duan, Chunruo; Teng, Xiaokun; Gao, Bin; Ye, Feng; Matsuda, Masaaki; Li, Fankang; Xu, Xianghan; Yi, Ming; Birol, Turan; Dai, Pengcheng; Blumberg, GirshSpontaneous symmetry breaking—the phenomenon in which an infinitesimal perturbation can cause the system to break the underlying symmetry—is a cornerstone concept in the understanding of interacting solid-state systems. In a typical series of temperature-driven phase transitions, higher-temperature phases are more symmetric due to the stabilizing effect of entropy that becomes dominant as the temperature is increased. However, the opposite is rare but possible when there are multiple degrees of freedom in the system. Here, we present such an example of a symmetry-ascending phenomenon upon cooling in a magnetic kagome metal FeGe by utilizing neutron Larmor diffraction and Raman spectroscopy. FeGe has a kagome lattice structure with simple A-type antiferromagnetic order below Néel temperature TN≈400 K and a charge density wave (CDW) transition at TCDW≈110 K, followed by a spin-canting transition at around 60 K. In the paramagnetic state at 460 K, we confirm that the crystal structure is indeed a hexagonal kagome lattice. On cooling to around TN, the crystal structure changes from hexagonal to monoclinic with in-plane lattice distortions on the order of 10−4 and the associated splitting of the double-degenerate phonon mode of the pristine kagome lattice. Upon further cooling to TCDW, the kagome lattice shows a small negative thermal expansion, and the crystal structure gradually becomes more symmetric upon further cooling. A tendency of increasing the crystalline symmetry upon cooling is unusual; it originates from an extremely weak structural instability that coexists and competes with the CDW and magnetic orders. These observations are against the expectations for a simple model with a single order parameter and hence can only be explained by a Landau free energy expansion that takes into account multiple lattice, charge, and spin degrees of freedom. Thus, the determination of the crystalline lattice symmetry as well as the unusual spin-lattice coupling is a first step towards understanding the rich electronic and magnetic properties of the system, and it sheds new light on intertwined orders where the lattice degree of freedom is no longer dominant.Item Topological Spin Excitations in Honeycomb Ferromagnet CrI3(American Physical Society, 2018) Chen, Lebing; Chung, Jae-Ho; Gao, Bin; Chen, Tong; Stone, Matthew B.; Kolesnikov, Alexander I.; Huang, Qingzhen; Dai, PengchengIn two-dimensional honeycomb ferromagnets, bosonic magnon quasiparticles (spin waves) may either behave as massless Dirac fermions or form topologically protected edge states. The key ingredient defining their nature is the next-nearest-neighbor Dzyaloshinskii-Moriya interaction that breaks the inversion symmetry of the lattice and discriminates chirality of the associated spin-wave excitations. Using inelastic neutron scattering, we find that spin waves of the insulating honeycomb ferromagnet CrI3 (TC=61 K) have two distinctive bands of ferromagnetic excitations separated by a ∼4 meV gap at the Dirac points. These results can only be understood by considering a Heisenberg Hamiltonian with Dzyaloshinskii-Moriya interaction, thus providing experimental evidence that spin waves in CrI3 can have robust topological properties potentially useful for dissipationless spintronic applications.