Browsing by Author "Deng, Liangzi"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Fluorinated h-BN as a magnetic semiconductor(American Association for the Advancement of Science, 2017) Radhakrishnan, Sruthi; Das, Deya; Samanta, Atanu; de los Reyes, Carlos A.; Deng, Liangzi; Alemany, Lawrence B.; Weldeghiorghis, Thomas K.; Khabashesku, Valery N.; Kochat, Vidya; Jin, Zehua; Sudeep, Parambath M.; Martí, Angel A.; Chu, Ching-Wu; Roy, Ajit; Tiwary, Chandra Sekhar; Singh, Abhishek K.; Ajayan, Pulickel M.We report the fluorination of electrically insulating hexagonal boron nitride (h-BN) and the subsequent modification of its electronic band structure to a wide bandgap semiconductor via introduction of defect levels. The electrophilic nature of fluorine causes changes in the charge distribution around neighboring nitrogen atoms in h-BN, leading to room temperature weak ferromagnetism. The observations are further supported by theoretical calculations considering various possible configurations of fluorinated h-BN structure and their energy states. This unconventional magnetic semiconductor material could spur studies of stable two-dimensional magnetic semiconductors. Although the high thermal and chemical stability of h-BN have found a variety of uses, this chemical functionalization approach expands its functionality to electronic and magnetic devices.Item Observation of flat bands and Dirac cones in a pyrochlore lattice superconductor(Springer Nature, 2024) Huang, Jianwei; Setty, Chandan; Deng, Liangzi; You, Jing-Yang; Liu, Hongxiong; Shao, Sen; Oh, Ji Seop; Guo, Yucheng; Zhang, Yichen; Yue, Ziqin; Yin, Jia-Xin; Hashimoto, Makoto; Lu, Donghui; Gorovikov, Sergey; Dai, Pengcheng; Denlinger, Jonathan D.; Allen, J. W.; Hasan, M. Zahid; Feng, Yuan-Ping; Birgeneau, Robert J.; Shi, Youguo; Chu, Ching-Wu; Chang, Guoqing; Si, Qimiao; Yi, Ming; Rice Center for Quantum MaterialsEmergent phases often appear when the electronic kinetic energy is comparable to the Coulomb interactions. One approach to seek material systems as hosts of such emergent phases is to realize localization of electronic wavefunctions due to the geometric frustration inherent in the crystal structure, resulting in flat electronic bands. Recently, such efforts have found a wide range of exotic phases in the two-dimensional kagome lattice, including magnetic order, time-reversal symmetry breaking charge order, nematicity, and superconductivity. However, the interlayer coupling of the kagome layers disrupts the destructive interference needed to completely quench the kinetic energy. Here we demonstrate that an interwoven kagome network—a pyrochlore lattice—can host a three dimensional (3D) localization of electron wavefunctions. Meanwhile, the nonsymmorphic symmetry of the pyrochlore lattice guarantees all band crossings at the Brillouin zone X point to be 3D gapless Dirac points, which was predicted theoretically but never yet observed experimentally. Through a combination of angle-resolved photoemission spectroscopy, fundamental lattice model and density functional theory calculations, we investigate the novel electronic structure of a Laves phase superconductor with a pyrochlore sublattice, CeRu2. We observe evidence of flat bands originating from the Ce 4f orbitals as well as flat bands from the 3D destructive interference of the Ru 4d orbitals. We further observe the nonsymmorphic symmetry-protected 3D gapless Dirac cone at the X point. Our work establishes the pyrochlore structure as a promising lattice platform to realize and tune novel emergent phases intertwining topology and many-body interactions.Item Vacancy-mediated anomalous phononic and electronic transport in defective half-Heusler ZrNiBi(Springer Nature, 2023) Ren, Wuyang; Xue, Wenhua; Guo, Shuping; He, Ran; Deng, Liangzi; Song, Shaowei; Sotnikov, Andrei; Nielsch, Kornelius; van den Brink, Jeroen; Gao, Guanhui; Chen, Shuo; Han, Yimo; Wu, Jiang; Chu, Ching-Wu; Wang, Zhiming; Wang, Yumei; Ren, ZhifengStudies of vacancy-mediated anomalous transport properties have flourished in diverse fields since these properties endow solid materials with fascinating photoelectric, ferroelectric, and spin-electric behaviors. Although phononic and electronic transport underpin the physical origin of thermoelectrics, vacancy has only played a stereotyped role as a scattering center. Here we reveal the multifunctionality of vacancy in tailoring the transport properties of an emerging thermoelectric material, defective n-type ZrNiBi. The phonon kinetic process is mediated in both propagating velocity and relaxation time: vacancy-induced local soft bonds lower the phonon velocity while acoustic-optical phonon coupling, anisotropic vibrations, and point-defect scattering induced by vacancy shorten the relaxation time. Consequently, defective ZrNiBi exhibits the lowest lattice thermal conductivity among the half-Heusler family. In addition, a vacancy-induced flat band features prominently in its electronic band structure, which is not only desirable for electron-sufficient thermoelectric materials but also interesting for driving other novel physical phenomena. Finally, better thermoelectric performance is established in a ZrNiBi-based compound. Our findings not only demonstrate a promising thermoelectric material but also promote the fascinating vacancy-mediated anomalous transport properties for multidisciplinary explorations.