Browsing by Author "Christianson, A.D."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Electron doping evolution of the neutron spin resonance in NaFe1−xCoxAs(American Physical Society, 2016) Zhang, Chenglin; Lv, Weicheng; Tan, Guotai; Song, Yu; Carr, Scott V.; Chi, Songxue; Matsuda, M.; Christianson, A.D.; Fernandez-Baca, J.A.; Harriger, L.W.; Dai, PengchengNeutron spin resonance, a collective magnetic excitation coupled to superconductivity, is one of the most prominent features shared by a broad family of unconventional superconductors including copper oxides, iron pnictides, and heavy fermions. In this paper, we study the doping evolution of the resonances in NaFe1−xCoxAs covering the entire superconducting dome. For the underdoped compositions, two resonance modes coexist. As doping increases, the low-energy resonance gradually loses its spectral weight to the high-energy one but remains at the same energy. By contrast, in the overdoped regime we only find one single resonance, which acquires a broader width in both energy and momentum but retains approximately the same peak position even when Tc drops by nearly a half compared to optimal doping. These results suggest that the energy of the resonance in electron overdoped NaFe1−xCoxAs is neither simply proportional to Tc nor the superconducting gap but is controlled by the multiorbital character of the system and doped impurity scattering effect.Item Experimental elucidation of the origin of the ‘double spin resonances’ in Ba(Fe1−xCox)2As2(American Physical Society, 2016) Wang, Meng; Yi, M.; Sun, H. L.; Valdivia, P.; Kim, M.G.; Xu, Z. J.; Berlijn, T.; Christianson, A.D.; Chi, Songxue; Hashimoto, M.; Lu, D.H.; Li, X.D.; Bourret-Courchesne, E.; Dai, Pengcheng; Lee, D.H.; Maier, T.A.; Birgeneau, R.J.We report a combined study of the spin resonances and superconducting gaps for underdoped (Tc=19 K), optimally doped (Tc=25 K), and overdoped (Tc=19 K) Ba(Fe1−xCox)2As2 single crystals with inelastic neutron scattering and angle resolved photoemission spectroscopy. We find a quasi-two-dimensional spin resonance whose energy scales with the superconducting gap in all three compounds. In addition, anisotropic low energy spin excitation enhancements in the superconducting state have been deduced and characterized for the under and optimally doped compounds. Our data suggest that the quasi-two-dimensional spin resonance is a spin exciton that corresponds to the spin singlet-triplet excitations of the itinerant electrons. However, the intensity enhancements of the anisotropic spin excitations are dominated by the out-of-plane spin excitations of the ordered moments due to the suppression of damping in the superconducting state. Hence we offer an interpretation of the double energy scales differing from previous interpretations based on anisotropic superconducting energy gaps and systematically explain the doping-dependent trend across the phase diagram.Item Temperature and polarization dependence of low-energy magnetic fluctuations in nearly optimally doped NaFe0.9785Co0.0215As(American Physical Society, 2017) Song, Yu; Wang, Weiyi; Zhang, Chenglin; Gu, Yanhong; Lu, Xingye; Tan, Guotai; Su, Yixi; Bourdarot, Frédéric; Christianson, A.D.; Li, Shiliang; Dai, PengchengWe use unpolarized and polarized neutron scattering to study the temperature and polarization dependence of low-energy magnetic fluctuations in nearly optimally doped NaFe0.9785Co0.0215As, with coexisting superconductivity (Tc≈19 K) and weak antiferromagnetic order (TN≈30 K, ordered moment ≈0.02μB/Fe). A single spin resonance mode with intensity tracking the superconducting order parameter is observed, although energy of the mode only softens slightly upon approaching Tc. Polarized neutron scattering reveals that the single resonance is mostly isotropic in spin space, similar to overdoped NaFe0.935Co0.045As but different from optimal electron-, hole-, and isovalently doped BaFe2As2 compounds, all featuring an additional prominent anisotropic component. Spin anisotropy in NaFe0.9785Co0.0215As is instead present at energies below the resonance, which becomes partially gapped below Tc, similar to the situation in optimally doped YBa2Cu3O6.9. Our results indicate that anisotropic spin fluctuations in NaFe1−xCoxAs appear in the form of a resonance in the underdoped regime, become partially gapped below Tc near optimal doping, and disappear in overdoped compounds.