Browsing by Author "Chin, Matthew L."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Blueshift of the A-exciton peak in folded monolayer 1H-MoS2(American Physical Society, 2013) Crowne, Frank J.; Amani, Matin; Birdwell, A. Glen; Chin, Matthew L.; O'Regan, Terrance P.; Najmaei, Sina; Liu, Zheng; Ajayan, Pulickel M.; Lou, Jun; Dubey, MadanItem Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition(American Institute of Physics, 2013) Amani, Matin; Chin, Matthew L.; Birdwell, A. Glen; O'Regan, Terrance P.; Najmaei, Sina; Liu, Zheng; Ajayan, Pulickel M.; Lou, Jun; Dubey, MadanMolybdenum disulfide (MoS2) field effect transistors (FET) were fabricated on atomically smooth large-area single layers grown by chemical vapor deposition. The layer qualities and physical properties were characterized using high-resolution Raman and photoluminescence spectroscopy, scanning electron microscopy, and atomic force microscopy. Electronic performance of the FET devices was measured using field effect mobility measurements as a function of temperature. The back-gated devices had mobilities of 6.0 cm2/V s at 300K without a high-j dielectric overcoat and increased to 16.1 cm2/V s with a high-j dielectric overcoat. In addition the devices show on/off ratios ranging from 105 to 109.Item Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2ᅠfield effect transistors(AIP Publishing LLC., 2014) Amani, Matin; Chin, Matthew L.; Mazzoni, Alexander L.; Burke, Robert A.; Najmaei, Sina; Ajayan, Pulickel M.; Lou, Jun; Dubey, MadanWe report on the electronic transport properties of single-layer thick chemical vapor deposition (CVD) grown molybdenum disulfide (MoS2) field-effect transistors (FETs) on Si/SiO2 substrates. MoS2 has been extensively investigated for the past two years as a potential semiconductor analogue to graphene. To date, MoS2 samples prepared via mechanical exfoliation have demonstrated field-effect mobility values which are significantly higher than that of CVD-grown MoS2. In this study, we will show that the intrinsic electronic performance of CVD-grown MoS2 is equal or superior to that of exfoliated material and has been possibly masked by a combination of interfacial contamination on the growth substrate and residual tensile strain resulting from the high-temperature growth process. We are able to quantify this strain in the as-grown material using pre- and post-transfer metrology and microscopy of the same crystals. Moreover, temperature-dependent electrical measurements made on as-grown and transferred MoS2 devices following an identical fabrication process demonstrate the improvement in field-effect mobility.