Browsing by Author "Chaika, Jon"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Borel-Cantelli Sequences(Springer, 2012-06) Boshernitzan, Michael; Chaika, JonItem Dichotomy for arithmetic progressions in subsets of reals(American Mathematical Society, 2016) Boshernitzan, Michael; Chaika, JonLet H stand for the set of homeomorphisms φ:[0, 1] → [0, 1]. We prove the following dichotomy for Borel subsets A ⊂ [0, 1]: • either there exists a homeomorphism φ ∈ Hsuch that the image φ(A) contains no 3-term arithmetic progressions; • or, for every φ ∈ H, the image φ(A) contains arithmetic progressions of arbitrary finite length. In fact, we show that the first alternative holds if and only if the set A is meager (a countable union of nowhere dense sets).Item Interval exchange transformations: Applications of Keane's construction and disjointness(2010) Chaika, Jon; Boshernitzan, MichaelThis thesis is divided into two parts. The first part uses a family of Interval Exchange Transformations constructed by Michael Keane to show that IETs can have some particular behavior including: (1) IETs can be topologically mixing. (2) A minimal IET can have an ergodic measure with Hausdorff dimension alpha for any alpha ∈ [0,1]. (3) The complement of the generic points for Lebesgue measure in a minimal non-uniquely ergodic IET can have Hausdorff dimension 0. Note that this is a dense Gdelta set. The second part shows that almost every pair of IETs are different. In particular, the product of almost every pair of IETs is uniquely ergodic. In proving this we show that any sequence of natural numbers of density 1 contains a rigidity sequence for almost every IET, strengthening a result of Veech.Item Zero measure spectrum for multi-frequency Schrödinger operators(EMS Press, 2022) Chaika, Jon; Damanik, David; Fillman, Jake; Gohlke, PhilippBuilding on works of Berthé–Steiner–Thuswaldner and Fogg–Nous, we show that on the two-dimensional torus, Lebesgue almost every translation admits a natural coding such that the associated subshift satisfies the Boshernitzan criterion. As a consequence, we show that for these torus translations, every quasi-periodic potential can be approximated uniformly by one for which the associated Schrödinger operator has Cantor spectrum of zero Lebesgue measure. We also describe a framework that can allow this to be extended to higher-dimensional tori.