Browsing by Author "Anandasabapathy, Sharmila"
Now showing 1 - 20 of 20
Results Per Page
Sort Options
Item Automated frame selection process for high-resolution microendoscopy(SPIE, 2015) Ishijima, Ayumu; Schwarz, Richard A.; Shin, Dongsuk; Mondrik, Sharon; Vigneswaran, Nadarajah; Gillenwater, Ann M.; Anandasabapathy, Sharmila; Richards-Kortum, RebeccaWe developed an automated frame selection algorithm for high-resolution microendoscopy video sequences. The algorithm rapidly selects a representative frame with minimal motion artifact from a short video sequence, enabling fully automated image analysis at the point-of-care. The algorithm was evaluated by quantitative comparison of diagnostically relevant image features and diagnostic classification results obtained using automated frame selection versus manual frame selection. A data set consisting of video sequences collected in vivo from 100 oral sites and 167 esophageal sites was used in the analysis. The area under the receiver operating characteristic curve was 0.78 (automated selection) versus 0.82 (manual selection) for oral sites, and 0.93 (automated selection) versus 0.92 (manual selection) for esophageal sites. The implementation of fully automated high-resolution microendoscopy at the point-of-care has the potential to reduce the number of biopsies needed for accurate diagnosis of precancer and cancer in low-resource settings where there may be limited infrastructure and personnel for standard histologic analysis.Item Automated In Vivo High-Resolution Imaging to Detect Human Papillomavirus–Associated Anal Precancer in Persons Living With HIV(Wolters Kluwer, 2023) Brenes, David; Kortum, Alex; Carns, Jennifer; Mutetwa, Tinaye; Schwarz, Richard; Liu, Yuxin; Sigel, Keith; Richards-Kortum, Rebecca; Anandasabapathy, Sharmila; Gaisa, Michael; Chiao, ElizabethINTRODUCTION: In the United States, the effectiveness of anal cancer screening programs has been limited by a lack of trained professionals proficient in high-resolution anoscopy (HRA) and a high patient lost-to-follow-up rate between diagnosis and treatment. Simplifying anal intraepithelial neoplasia grade 2 or more severe (AIN 2+) detection could radically improve the access and efficiency of anal cancer prevention. Novel optical imaging providing point-of-care diagnoses could substantially improve existing HRA and histology-based diagnosis. This work aims to demonstrate the potential of high-resolution microendoscopy (HRME) coupled with a novel machine learning algorithm for the automated, in vivo diagnosis of anal precancer. METHODS: The HRME, a fiber-optic fluorescence microscope, was used to capture real-time images of anal squamous epithelial nuclei. Nuclear staining is achieved using 0.01% wt/vol proflavine, a topical contrast agent. HRME images were analyzed by a multitask deep learning network (MTN) that computed the probability of AIN 2+ for each HRME image. RESULTS: The study accrued data from 77 people living with HIV. The MTN achieved an area under the receiver operating curve of 0.84 for detection of AIN 2+. At the AIN 2+ probability cutoff of 0.212, the MTN achieved comparable performance to expert HRA impression with a sensitivity of 0.92 (P = 0.68) and specificity of 0.60 (P = 0.48) when using histopathology as the gold standard. DISCUSSION: When used in combination with HRA, this system could facilitate more selective biopsies and promote same-day AIN2+ treatment options by enabling real-time diagnosis.Item Design and Evaluation of ScanCap: A Low-Cost, Reusable Tethered Capsule Endoscope with Blue-Green Illumination Imaging for Unsedated Screening and Early Detection of Barrett’s Esophagus(MDPI, 2024) Hicheri, Cheima; Azimuddin, Ahad M.; Kortum, Alex; Bailey, Joseph; Tang, Yubo; Schwarz, Richard A.; Rosen, Daniel; Jain, Shilpa; Mansour, Nabil M.; Groth, Shawn; Vasavada, Shaleen; Rao, Ashwin; Maliga, Adrianna; Gallego, Leslie; Carns, Jennifer; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca; Rice360 Institute for Global Health TechnologiesEsophageal carcinoma is the sixth-leading cause of cancer death worldwide. A precursor to esophageal adenocarcinoma (EAC) is Barrett’s Esophagus (BE). Early-stage diagnosis and treatment of esophageal neoplasia (Barrett’s with high-grade dysplasia/intramucosal cancer) increase the five-year survival rate from 10% to 98%. BE is a global challenge; however, current endoscopes for early BE detection are costly and require extensive infrastructure for patient examination and sedation. We describe the design and evaluation of the first prototype of ScanCap, a high-resolution optical endoscopy system with a reusable, low-cost tethered capsule, designed to provide high-definition, blue-green illumination imaging for the early detection of BE in unsedated patients. The tethered capsule (12.8 mm diameter, 35.5 mm length) contains a color camera and rotating mirror and is designed to be swallowed; images are collected as the capsule is retracted manually via the tether. The tether provides electrical power and illumination at wavelengths of 415 nm and 565 nm and transmits data from the camera to a tablet. The ScanCap prototype capsule was used to image the oral mucosa in normal volunteers and ex vivo esophageal resections; images were compared to those obtained using an Olympus CV-180 endoscope. Images of superficial capillaries in intact oral mucosa were clearly visible in ScanCap images. Diagnostically relevant features of BE, including irregular Z-lines, distorted mucosa, and dilated vasculature, were clearly visible in ScanCap images of ex vivo esophageal specimens.Item Diagnosis of Neoplasia in Barrett’s Esophagus using Vital-dye Enhanced Fluorescence Imaging(JoVE, 2014) Perl, Daniel P.; Parikh, Neil; Chang, Shannon; Peng, Paul; Thekkek, Nadhi; Lee, Michelle H.; Polydorides, Alexandros D.; Mitcham, Josephine; Richards-Kortum, Rebecca; Anandasabapathy, SharmilaThe ability to differentiate benign metaplasia in Barrett’s Esophagus (BE) from neoplasia in vivo remains difficult as both tissue types can be flat and indistinguishable with white light imaging alone. As a result, a modality that highlights glandular architecture would be useful to discriminate neoplasia from benign epithelium in the distal esophagus. VFI is a novel technique that uses an exogenous topical fluorescent contrast agent to delineate high grade dysplasia and cancer from benign epithelium. Specifically, the fluorescent images provide spatial resolution of 50 to 100 μm and a field of view up to 2.5 cm, allowing endoscopists to visualize glandular morphology. Upon excitation, classic Barrett’s metaplasia appears as continuous, evenly-spaced glands and an overall homogenous morphology; in contrast, neoplastic tissue appears crowded with complete obliteration of the glandular framework. Here we provide an overview of the instrumentation and enumerate the protocol of this new technique. While VFI affords a gastroenterologist with the glandular architecture of suspicious tissue, cellular dysplasia cannot be resolved with this modality. As such, one cannot morphologically distinguish Barrett’s metaplasia from BE with Low-Grade Dysplasia via this imaging modality. By trading off a decrease in resolution with a greater field of view, this imaging system can be used at the very least as a red-flag imaging device to target and biopsy suspicious lesions; yet, if the accuracy measures are promising, VFI may become the standard imaging technique for the diagnosis of neoplasia (defined as either high grade dysplasia or cancer) in the distal esophagus.Item Feasibility of transoral robotic-assisted high-resolution microendoscopic imaging of oropharyngeal squamous cell carcinoma(Wiley, 2015) Patsias, Alexis; Giraldez-Rodriguez, Laureano A.; Polydorides, Alexandros D.; Richards-Kortum, Rebecca; Anandasabapathy, Sharmila; Quang, Timothy; Sikora, Andrew G.; Miles, Brett A.Background: Transoral robotic-assisted oncologic surgery of the head and neck offers promising functional results. Nonetheless, the efficacy of oncologic surgery remains critically dependent on obtaining negative margins. We aimed to integrate a miniaturized high-resolution fiber-optic microendoscope (HRME), which provides real-time histological assessment, with the da Vinci robotic system (Intuitive Surgical, Sunnyvale, CA). Methods: Three patients undergoing transoral robotic surgery (TORS) were prospectively enrolled in this study. Optical imaging of the oropharynx was performed intraoperatively with the robotic-assisted HRME. Results: All patients underwent the procedure successfully with no complications. The HRME was successfully integrated with the da Vinci robotic system. Several sites of the oropharynx and associated malignancy were imaged, which correlated with the standard histopathological analysis. Conclusion: Transoral robotic-assisted HRME imaging of the oropharynx is a safe and technically feasible approach, providing a real-time histological assessment and may serve as a valuable aid in oncologic surgery.Item High resolution microendoscopy for quantitative diagnosis of esophageal neoplasia(2013-09-16) Shin, Dong Suk; Richards-Kortum, Rebecca Rae; Tkaczyk, Tomasz S.; Baraniuk, Richard G.; Anandasabapathy, SharmilaEsophageal cancer is the eighth most common cancer in the world. Cancers of the esophagus account for 3.8% of all cases of cancers, with approximately 482,300 new cases reported in 2008 worldwide. In the United States alone, it is estimated that approximately 18,000 new cases will be diagnosed in 2013, and 15,210 deaths are expected. Despite advances in surgery and chemoradiation therapy, these advances have not led to a significant increase in survival rates, primarily because diagnosis often at an advanced and incurable stage when treatment is more difficult and less successful. Accurate, objective methods for early detection of esophageal neoplasia are needed. Here, quantitative classification algorithms for high resolution miscroendoscopic images were developed to distinguish between esophageal neoplastic and non-neoplastic tissue. A clinical study in 177 patients with esophageal squamous cell carcinoma (ESCC) was performed to evaluate the diagnostic performance of the classification algorithm in collaboration with the Mount Sinai Medical Center in the United States, the First Hospital of Jilin University in China, and the Cancer Institute and Hospital, the Chinese Academy of Medical Science in China. The study reported a sensitivity and specificity of 93% and 92%, respectively, in the training set, 87% and 97%, respectively, in the test set, and 84% and 95%, respectively, in an independent validation set. Another clinical study in 31 patients with Barrett’s esophagus resulted in a sensitivity of 84% and a specificity of 85%. Finally, a compact, portable version of the high resolution microendoscopy (HRME) device using a consumer-grade camera was developed and a series of biomedical experimental studies were carried out to assess the capability of the device.Item High-resolution microendoscopy for esophageal cancer screening in China: A cost-effectiveness analysis(Baishideng Publishing Group Inc., 2015) Hur, Chin; Choi, Sung Eun; Kong, Chung Yin; Wang, Gui-Qi; Xu, Hong; Polydorides, Alexandros D.; Xue, Li-Yan; Perzan, Katherine E.; Tramontano, Angela C.; Richards-Kortum, Rebecca R.; Anandasabapathy, SharmilaAIM: To study the cost-effectiveness of high-resolution microendoscopy (HRME) in an esophageal squamous cell carcinoma (ESCC) screening program in China. METHODS: A decision analytic Markov model of ESCC was developed. Separate model analyses were conducted for cohorts consisting of an average-risk population or a high-risk population in China. Hypothetical 50-year-old individuals were followed until age 80 or death. We compared three different strategies for both cohorts: (1) no screening; (2) standard endoscopic screening with Lugol's iodine staining; and (3) endoscopic screening with Lugol's iodine staining and an HRME. Model parameters were estimated from the literature as well as from GLOBOCAN, the Cancer Incidence and Mortality Worldwide cancer database. Health states in the model included non-neoplasia, mild dysplasia, moderate dysplasia, high-grade dysplasia, intramucosal carcinoma, operable cancer, inoperable cancer, and death. Separate ESCC incidence transition rates were generated for the average-risk and high-risk populations. Costs in Chinese currency were converted to international dollars (I$) and were adjusted to 2012 dollars using the Consumer Price Index. RESULTS: The main outcome measurements for this study were quality-adjusted life years (QALYs) and incremental cost-effectiveness ratio (ICER). For the average-risk population, the HRME screening strategy produced 0.043 more QALYs than the no screening strategy at an additional cost of I$646, resulting in an ICER of I$11808 per QALY gained. Standard endoscopic screening was weakly dominated. Among the high-risk population, when the HRME screening strategy was compared with the standard screening strategy, the ICER was I$8173 per QALY. For both the high-risk and average-risk screening populations, the HRME screening strategy appeared to be the most cost-effective strategy, producing ICERs below the willingness-to-pay threshold, I$23500 per QALY. One-way sensitivity analysis showed that, for the average-risk population, higher specificity of Lugol's iodine (> 40%) and lower specificity of HRME (< 70%) could make Lugol's iodine screening cost-effective. For the high-risk population, the results of the model were not substantially affected by varying the follow-up rate after Lugol's iodine screening, Lugol's iodine test characteristics (sensitivity and specificity), or HRME specificity. CONCLUSION: The incorporation of HRME into an ESCC screening program could be cost-effective in China. Larger studies of HRME performance are needed to confirm these findingsItem High-resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps(Elsevier, 2015) Louie, Justin S.; Shukla, Richa; Richards-Kortum, Rebecca; Anandasabapathy, SharmilaColorectal cancer is one of the leading causes of death worldwide. The progression from adenoma to cancer is a well known phenomenon. Current clinical practice favors colonoscopy as the preferred modality for colorectal cancer screening. Many novel endoscopic technologies are emerging for the purposes of performing "optical biopsy" to allow real-time histologic diagnosis of polyps. High resolution microendoscopy is a low-cost endoscopic technology that has demonstrated high sensitivity and specificity in differentiating neoplastic and non-neoplastic polyps. With the ability to make real-time conclusions based on the endoscopic appearance of polyps, it is becoming increasingly possible to decrease the rate of unnecessary polypectomies and utilize a "resect and discard" strategy to decrease costs of pathology evaluation. Future directions for this technology include surveillance of premalignant conditions such as inflammatory bowel disease. Moreover, the low cost and relative ease of use of this technology lends itself to widespread applicability.Item In vivo classification of colorectal neoplasia using high-resolution microendoscopy: Improvement with experience(Wiley, 2015) Parikh, Neil D.; Perl, Daniel; Lee, Michelle H.; Chang, Shannon S.; Polydorides, Alexandros D.; Moshier, Erin; Godbold, James; Zhou, Elinor; Mitcham, Josephine; Richards-Kortum, Rebecca; Anandasabapathy, SharmilaBackground and Aims: High-resolution microendoscopy (HRME) is a novel, low-cost “optical biopsy” technology that allows for subcellular imaging. The study aim was to evaluate the learning curve of HRME for the differentiation of neoplastic from non-neoplastic colorectal polyps. Methods: In a prospective cohort fashion, a total of 162 polyps from 97 patients at a single tertiary care center were imaged by HRME and classified in real time as neoplastic (adenomatous, cancer) or non-neoplastic (normal, hyperplastic, inflammatory). Histopathology was the gold standard for comparison. Diagnostic accuracy was examined at three intervals over time throughout the study; the initial interval included the first 40 polyps, the middle interval included the next 40 polyps examined, and the final interval included the last 82 polyps examined. Results: Sensitivity increased significantly from the initial interval (50%) to the middle interval (94%, P = 0.02) and the last interval (97%, P = 0.01). Similarly, specificity was 69% for the initial interval but increased to 92% (P = 0.07) in the middle interval and 96% (P = 0.02) in the last interval. Overall accuracy was 63% for the initial interval and then improved to 93% (P = 0.003) in the middle interval and 96% (P = 0.0007) in the last interval. Conclusions: In conclusion, this in vivo study demonstrates that an endoscopist without prior colon HRME experience can achieve greater than 90% accuracy for identifying neoplastic colorectal polyps after 40 polyps imaged. HRME is a promising modality to complement white light endoscopy in differentiating neoplastic from non-neoplastic colorectal polyps.Item In vivo diagnostic accuracy of high resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study(The American Journal of Gastroenterology, 2014) Parikh, Neil; Perl, Daniel; Lee, Michelle H.; Shah, Brijen; Young, Yuki; Chang, Shannon S.; Shukla, Richa; Polydorides, Alexandros D.; Moshier, Erin; Godbold, James; Zhou, Elinor; Mitchaml, Josephine; Richards-Kortum, Rebecca; Anandasabapathy, SharmilaHigh-resolution microendoscopy (HRME) is a low-cost, モoptical biopsyヤ technology that allows for subcellular imaging. The purpose of this study was to determine the in vivo diagnostic accuracy of the HRME for the differentiation of neoplastic from non-neoplastic colorectal polyps and compare it to that of high-definition white-light endoscopy (WLE) with histopathology as the gold standard. Three endoscopists prospectively detected a total of 171 polyps from 94 patients that were then imaged by HRME and classified in real-time as neoplastic (adenomatous, cancer) or non-neoplastic (normal, hyperplastic, inflammatory). HRME had a significantly higher accuracy (94%), specificity (95%), and positive predictive value (87%) for the determination of neoplastic colorectal polyps compared to WLE (65%, 39%, and 55%, respectively). When looking at small colorectal polyps (less than 10 mm), HRME continued to significantly outperform WLE in terms of accuracy (95% vs. 64%), specificity (98% vs. 40%) and positive predictive value (92% vs. 55%). These trends continued when evaluating diminutive polyps (less than 5 mm) as HRME's accuracy (95%), specificity (98%), and positive predictive value (93%) were all significantly greater than their WLE counterparts (62%, 41%, and 53%, respectively). In conclusion, this in vivo study demonstrates that HRME can be a very effective modality in the differentiation of neoplastic and non-neoplastic colorectal polyps. A combination of standard white-light colonoscopy for polyp detection and HRME for polyp classification has the potential to truly allow the endoscopist to selectively determine which lesions can be left in situ, which lesions can simply be discarded, and which lesions need formal histopathologic analysis.Item Low-Cost High-Resolution Microendoscopy for the Detection of Esophageal Squamous Cell Neoplasia: An International Trial(Elsevier, 2015) Protano, Marion-Anna; Xu, Hong; Wang, Guiqi; Polydorides, Alexandros D.; Dawsey, Sanford M.; Cui, Junsheng; Xue, Liyan; Zhang, Fan; Quang, Timothy; Pierce, Mark C.; Shin, Dongsuk; Schwarz, Richard A.; Bhutani, Manoop S.; Lee, Michelle; Parikh, Neil; Hur, Chin; Xu, Weiran; Moshier, Erin; Godbold, James; Mitcham, Josephine; Hudson, Courtney; Richards-Kortum, Rebecca R.; Anandasabapathy, SharmilaBackground & Aims: Esophageal squamous cell neoplasia has a high mortality rate as a result of late detection. In high-risk regions such as China, screening is performed by Lugol’s chromoendoscopy (LCE). LCE has low specificity, resulting in unnecessary tissue biopsy with a subsequent increase in procedure cost and risk. The purpose of this study was to evaluate the accuracy of a novel, low-cost, high-resolution microendoscope (HRME) as an adjunct to LCE. Methods: In this prospective trial, 147 consecutive high-risk patients were enrolled from 2 US and 2 Chinese tertiary centers. Three expert and 4 novice endoscopists performed white-light endoscopy followed by LCE and HRME. All optical images were compared with the gold standard of histopathology. Results: By using a per-biopsy analysis, the sensitivity of LCE vs LCE + HRME was 96% vs 91% (P = .0832), specificity was 48% vs 88% (P < .001), positive predictive value was 22% vs 45% (P < .0001), negative predictive value was 98% vs 98% (P = .3551), and overall accuracy was 57% vs 90% (P < .001), respectively. By using a per-patient analysis, the sensitivity of LCE vs LCE + HRME was 100% vs 95% (P = .16), specificity was 29% vs 79% (P < .001), positive predictive value was 32% vs 60%, 100% vs 98%, and accuracy was 47% vs 83% (P < .001). With the use of HRME, 136 biopsies (60%; 95% confidence interval, 53%–66%) could have been spared, and 55 patients (48%; 95% confidence interval, 38%–57%) could have been spared any biopsy. Conclusions: In this trial, HRME improved the accuracy of LCE for esophageal squamous cell neoplasia screening and surveillance. HRME may be a cost-effective optical biopsy adjunct to LCE, potentially reducing unnecessary biopsies and facilitating real-time decision making in globally underserved regions. ClinicalTrials.gov, NCT 01384708.Item Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett's-associated neoplasia(SPIE, 2013-02) Thekkek, Nadhi; Pierce, Mark C.; Lee, Michelle H.; Polydorides, Alexandros D.; Flores, Raja M.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca R.A modular video endoscope is developed and tested to allow imaging in different modalities. This system incorporates white light imaging (WLI), cross-polarized imaging (CPI), and vital-dye fluorescence imaging (VFI), using interchangeable filter modules. CPI and VFI are novel endoscopic modalities that probe mucosal features associated with Barrett's neoplasia. CPI enhances vasculature, while VFI enhances glandular architecture. In this pilot study, we demonstrate the integration of these modalities by imaging areas of Barrett's metaplasia and neoplasia in an esophagectomy specimen. We verify that those key image features are also observed during an in vivo surveillance procedure. CPI images demonstrate improved visualization of branching blood vessels associated with neoplasia. VFI images show glandular architecture with increased glandular effacement associated with neoplasia. Results suggests that important pathologic features seen in CPI and VFI are not visible during standard endoscopic white light imaging, and thus the modalities may be useful in future in vivo studies for discriminating neoplasia from Barrett's metaplasia. We further demonstrate that the integrated WLI/CPI/VFI endoscope is compatible with complementary high-resolution endomicroscopy techniques such as the high-resolution microendoscope, potentially enabling two-step (“red-flag” widefield plus confirmatory high-resolution imaging) protocols to be enhanced.Item Optical Imaging Techniques for the Detection of Esophageal Neoplasia in Barrett’s Esophagus(2013-09-16) Thekkek, Nadhi; Richards-Kortum, Rebecca Rae; Baraniuk, Richard G.; Anandasabapathy, Sharmila; McDevitt, John T.The main objective of this research was to develop a two-stage optical imaging platform to improve detection of cancer in Barrett’s esophagus (BE). BE caused by chronic reflux and patients with BE are at a higher risk for developing esophageal adenocarcinoma (EAC). However, neoplasia in BE is often unidentifiable under standard endoscopy, and studies have shown nearly half of early cancers can go unidentified by this method. Widefield imaging (resolves ~100 microns) allows efficient surveillance of large BE segments. Two widefield imaging techniques were identified to improve contrast between benign and abnormal lesions during an ex vivo 15 patient feasibility study. Cross-polarized imaging (CPI) reduced specular reflection and improved vascular contrast. Vital-dye fluorescence imaging (VFI) using topically-applied proflavine improved visualization of glandular pattern. Moreover, relevant pathologic features visible during VFI were seen in corresponding histology slides as well as high resolution images of the same sites. Based on these results, a cap-based Multispectral Digital Endoscope (MDE) was designed and built. The MDE can image in three different imaging modes: white light imaging, CPI, and VFI. Modifications to a Pentax EPK-i video processor and a Pentax endoscope were made to incorporate these imaging modes into one system. A 21 patient in vivo pilot study with 65 pathologically correlated sites demonstrated the feasibility of using this system in vivo; image criteria were developed to classify neoplasia with a sensitivity and specificity of 100% and 76% respectively. High resolution imaging (resolves ~2-5 micron) may verify the disease presence in suspicious areas identified using widefield techniques. 2-NBDG, a fluorescent metabolic marker, was used as to identify neoplastic biopsies. In a study with 21 patients yielding 38 pathologically correlated biopsies and 158 image sites, 2-NBDG imaging allowed classification of cancerous biopsies with a sensitivity of 96% and specificity of 90%. The unique contributions of these results is the development of a multimodal cap-based endoscopic system to identify suspicious areas in BE, and using a metabolic marker to verify the presence of disease. This application extends beyond esophageal cancer detection and may be explored for cancer detection in other organ sites characterized by columnar epithelium.Item Optical Molecular Imaging in the Gastrointestinal Tract(Elsevier, 2013-05) Carns, Jennifer; Keahey, Pelham; Quang, Timothy; Anandasabapathy, Sharmila; Richards-Kortum, RebeccaRecent developments in optical molecular imaging allow for real-time identification of morphological and biochemical changes in tissue associated with gastrointestinal neoplasia. This review summarizes widefield and high resolution imaging modalities currently in pre-clinical and clinical evaluation for the detection of colorectal cancer and esophageal cancer. Widefield techniques discussed include high definition white light endoscopy, narrow band imaging, autofluoresence imaging, and chromoendoscopy; high resolution techniques discussed include probe-based confocal laser endomicroscopy, high-resolution microendoscopy, and optical coherence tomography. Finally, new approaches to enhance image contrast using vital dyes and molecular-specific targeted contrast agents are evaluated.Item Quantitative Analysis of High-Resolution Microendoscopic Images for Diagnosis of Esophageal Squamous Cell Carcinomaᅠ(Elsevier, 2015) Shin, Dongsuk; Protano, Marion-Anna; Polydorides, Alexandros D.; Dawsey, Sanford M.; Pierce, Mark C.; Kim, Michelle Kang; Schwarz, Richard A.; Quang, Timothy; Parikh, Neil; Bhutani, Manoop S.; Zhang, Fan; Wang, Guiqi; Xue, Liyan; Wang, Xueshan; Xu, Hong; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca R.Background & Aims: High-resolution microendoscopy is an optical imaging technique with the potential to improve the accuracy of endoscopic screening for esophageal squamous neoplasia. Although these microscopic images can be interpreted readily by trained personnel, quantitative image analysis software could facilitate the use of this technology in low-resource settings. In this study, we developed and evaluated quantitative image analysis criteria for the evaluation of neoplastic and non-neoplastic squamous esophageal mucosa. Methods: We performed an image analysis of 177 patients undergoing standard upper endoscopy for screening or surveillance of esophageal squamous neoplasia, using high-resolution microendoscopy, at 2 hospitals in China and at 1 hospital in the United States from May 2010 to October 2012. Biopsy specimens were collected from imaged sites (n = 375), and a consensus diagnosis was provided by 2 expert gastrointestinal pathologists and used as the standard. Results: Quantitative information from the high-resolution images was used to develop an algorithm to identify high-grade squamous dysplasia or invasive squamous cell cancer, based on histopathology findings. Optimal performance was obtained using the mean nuclear area as the basis for classification, resulting in sensitivities and specificities of 93% and 92% in the training set, 87% and 97% in the test set, and 84% and 95% in an independent validation set, respectively. Conclusions: High-resolution microendoscopy with quantitative image analysis can aid in the identification of esophageal squamous neoplasia. Use of software-based image guides may overcome issues of training and expertise in low-resource settings, allowing for widespread use of these optical biopsy technologies.Item Quantitative analysis of high-resolution microendoscopic images for diagnosis of neoplasia in patients with Barrett’s esophagus(Elsevier, 2016) Shin, Dongsuk; Lee, Michelle H.; Polydorides, Alexandros D.; Pierce, Mark C.; Vila, Peter M.; Parikh, Neil D.; Rosen, Daniel G.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca R.Background and Aims: Previous studies show that microendoscopic images can be interpreted visually to identify the presence of neoplasia in patients with Barrett’s esophagus (BE), but this approach is subjective and requires clinical expertise. This study describes an approach for quantitative image analysis of microendoscopic images to identify neoplastic lesions in patients with BE. Methods: Images were acquired from 230 sites from 58 patients by using a fiberoptic high-resolution microendoscope during standard endoscopic procedures. Images were analyzed by a fully automated image processing algorithm, which automatically selected a region of interest and calculated quantitative image features. Image features were used to develop an algorithm to identify the presence of neoplasia; results were compared with a histopathology diagnosis. Results: A sequential classification algorithm that used image features related to glandular and cellular morphology resulted in a sensitivity of 84% and a specificity of 85%. Applying the algorithm to an independent validation set resulted in a sensitivity of 88% and a specificity of 85%. Conclusions: This pilot study demonstrates that automated analysis of microendoscopic images can provide an objective, quantitative framework to assist clinicians in evaluating esophageal lesions from patients with BE. (Clinical trial registration number: NCT01384227 and NCT02018367.)Item Quantitative analysis of in vivo high-resolution microendoscopic images for the detection of neoplastic colorectal polyps(SPIE, 2018) Tang, Yubo; Polydorides, Alexandros D.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca R.Colonoscopy is routinely performed for colorectal cancer screening but lacks the capability to accurately characterize precursor lesions and early cancers. High-resolution microendoscopy (HRME) is a low-cost imaging tool to visualize colorectal polyps with subcellular resolution. We present a computer-aided algorithm to evaluate HRME images of colorectal polyps and classify neoplastic from benign lesions. Using histopathology as the gold standard, clinically relevant features based on luminal morphology and texture are quantified to build the classification algorithm. We demonstrate that adenomatous polyps can be identified with a sensitivity and specificity of 100% and 80% using a two-feature linear discriminant model in a pilot test set. The classification algorithm presented here offers an objective framework to detect adenomatous lesions in the colon with high accuracy and can potentially improve real-time assessment of colorectal polyps.Item Quantitative evaluation of in vivo vital-dye fluorescence endoscopic imaging for the detection of Barrett’s-associated neoplasia(SPIE, 2015) Thekkek, Nadhi; Lee, Michelle H.; Polydorides, Alexandros D.; Rosen, Daniel G.; Anandasabapathy, Sharmila; Richards-Kortum, RebeccaCurrent imaging tools are associated with inconsistent sensitivity and specificity for detection of Barrett’s-associated neoplasia. Optical imaging has shown promise in improving the classification of neoplasia in vivo. The goal of this pilot study was to evaluate whether in vivo vital dye fluorescence imaging (VFI) has the potential to improve the accuracy of early-detection of Barrett’s-associated neoplasia. In vivo endoscopic VFI images were collected from 65 sites in 14 patients with confirmed Barrett’s esophagus (BE), dysplasia, or esophageal adenocarcinoma using a modular video endoscope and a high-resolution microendoscope (HRME). Qualitative image features were compared to histology; VFI and HRME images show changes in glandular structure associated with neoplastic progression. Quantitative image features in VFI images were identified for objective image classification of metaplasia and neoplasia, and a diagnostic algorithm was developed using leave-one-out cross validation. Three image features extracted from VFI images were used to classify tissue as neoplastic or not with a sensitivity of 87.8% and a specificity of 77.6% (AUC=0.878). A multimodal approach incorporating VFI and HRME imaging can delineate epithelial changes present in Barrett’s-associated neoplasia. Quantitative analysis of VFI images may provide a means for objective interpretation of BE during surveillance.Item Simple differential digital confocal aperture to improve axial response of line-scanning confocal microendoscopes(Optical Society of America, 2019) Tang, Yubo; Kortum, Alex; Vohra, Imran; Carns, Jennifer; Anandasabapathy, Sharmila; Richards-Kortum, RebeccaLine-scanning confocal microendoscopy offers video-rate cellular imaging of scattering tissue with relatively simple hardware, but its axial response is inferior to that of point-scanning systems. Based on Fourier optics theory, we designed differential confocal apertures with a simple subtraction technique to improve the line-scanning sectioning performance. Taking advantage of digital slit apertures on a digital light projector and a CMOS rolling shutter, we demonstrate real-time optical sectioning performance comparable to point scanning in a dual-camera microendoscope (<$6,000). We validate the background rejection capability when imaging porcine columnar epithelium stained with fluorescent contrast agents with different uptake mechanisms and staining properties.Item Use of topical methylene blue to image nuclear morphometry with a low-cost scanning darkfield microendoscope(SPIE, 2024) Hou, Huayu; Carns, Jennifer; Schwarz, Richard A.; Gillenwater, Ann M.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca R.SignificanceFiber-optic microendoscopy is a promising approach to noninvasively visualize epithelial nuclear morphometry for early cancer and precancer detection. However, the broader clinical application of this approach is limited by a lack of topical contrast agents available for in vivo use.AimThe aim of this study was to evaluate the ability to image nuclear morphometry in vivo with a novel fiber-optic microendoscope used together with topical application of methylene blue (MB), a dye with FDA approval for use in chromoendoscopy in the gastrointestinal tract.ApproachThe low-cost, high-resolution microendoscope implements scanning darkfield imaging without complex optomechanical components by leveraging programmable illumination and the rolling shutter of the image sensor. We validate the integration of our system and MB staining for visualizing epithelial cell nuclei by performing ex vivo imaging on fresh animal specimens and in vivo imaging on healthy volunteers.ResultsThe results indicate that scanning darkfield imaging significantly reduces specular reflection and resolves epithelial nuclei with enhanced image contrast and spatial resolution compared to non-scanning widefield imaging. The image quality of darkfield images with MB staining is comparable to that of fluorescence images with proflavine staining.ConclusionsOur approach enables real-time microscopic evaluation of nuclear patterns and has the potential to be a powerful noninvasive tool for early cancer detection.