Center for Research Computing
Permanent URI for this collection
The Center for Research Computing (CRC) supports computational work by Rice faculty, staff, and student researchers. In cases where the lead author deems these contributions to merit an explicit acknowledgement in the paper or dataset, or the lead author is CRC staff, that item is manually added to this collection (in addition to any other collections it may already belong to).
Browse
Browsing Center for Research Computing by Author "Biosciences"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Depth and coral cover drive the distribution of a coral macroborer across two reef systems(Public Library of Science, 2018) Maher, Rebecca L.; Johnston, Michelle A.; Brandt, Marilyn E.; Smith, Tyler Burton; Correa, Adrienne M.S.; BiosciencesBioerosion, the removal of calcium carbonate from coral frameworks by living organisms, influences a variety of reef features, from their topographic complexity to the net balance of carbonate budgets. Little is known, however, about how macroborers, which bore into reef substrates leaving traces greater than 0.1 mm diameter, are distributed across coral reefs, particularly reef systems with high (>50%) stony coral cover or at mesophotic depths (≥30 m). Here, we present an accurate and efficient method for quantifying macroborer densities from stony coral hosts via image analysis, using the bioeroding barnacle, Lithotrya dorsalis, and its host coral, Orbicella franksi, as a case study. We found that in 2014, L. dorsalis densities varied consistently with depth and host percent cover in two Atlantic reef systems: the Flower Garden Banks (FGB, northwest Gulf of Mexico) and the U.S. Virgin Islands (USVI). Although average barnacle density was nearly 4.5 times greater overall in the FGB than in the USVI, barnacle density decreased with depth in both reef regions. Barnacle density also scaled negatively with increasing coral cover in the study areas, suggesting that barnacle populations are not strictly space-limited in their distribution and settlement opportunities. Our findings suggest that depth and host coral cover, and potentially, local factors may strongly influence the abundance of macroborers, and thus the rate of CaCO3 loss, in a given reef system. Our image analysis method for quantifying macroborers can be standardized across historical and modern reef records to better understand how borers impact host growth and reef health.Item Structure of androcam supports specialized interactions with myosin VI(National Academy of Sciences, 2012) Joshi, Mehul K.; Moran, Sean; Beckingham, Kathleen M.; MacKenzie, Kevin R.; BiosciencesAndrocam replaces calmodulin as a tissue-specific myosin VI light chain on the actin cones that mediate D. melanogaster spermatid individualization. We show that the androcam structure and its binding to the myosin VI structural (Insert 2) and regulatory (IQ) light chain sites are distinct from those of calmodulin and provide a basis for specialized myosin VI function. The androcam N lobe noncanonically binds a single Ca2þ and is locked in a “closed” conformation, causing androcam to contact the Insert 2 site with its C lobe only. Androcam replacing calmodulin at Insert 2 will increase myosin VI lever arm flexibility, which may favor the compact monomeric form of myosin VI that functions on the actin cones by facilitating the collapse of the C-terminal region onto the motor domain. The tethered androcam N lobe could stabilize the monomer through contacts with C-terminal portions of the motor or recruit other components to the actin cones. Androcam binds the IQ site at all calcium levels, constitutively mimicking a conformation adopted by calmodulin only at intermediate calcium levels. Thus, androcam replacing calmodulin at IQ will abolish a Ca2þ-regulated, calmodulin-mediated myosin VI structural change. We propose that the N lobe prevents androcam from interfering with other calmodulin- mediated Ca2þ signaling events. We discuss how gene duplication and mutations that selectively stabilize one of the many conformations available to calmodulin support the molecular evolution of structurally and functionally distinct calmodulin-like proteins.