Hierarchical Wavelet-Based Image Model for Pattern Analysis and Synthesis

dc.citation.bibtexNameinproceedingsen_US
dc.citation.conferenceNameWavelet Applications in Signal and Image Processingen_US
dc.contributor.authorScott, Claytonen_US
dc.contributor.authorNowak, Robert Daviden_US
dc.contributor.orgCenter for Multimedia Communications (http://cmc.rice.edu/)en_US
dc.contributor.orgDigital Signal Processing (http://dsp.rice.edu/)en_US
dc.date.accessioned2007-10-31T01:04:39Zen_US
dc.date.available2007-10-31T01:04:39Zen_US
dc.date.issued2000-07-20en_US
dc.date.modified2001-09-04en_US
dc.date.note2001-09-04en_US
dc.date.submitted2000-07-20en_US
dc.descriptionConference Paperen_US
dc.description.abstractDespite their success in other areas of statistical signal processing, current wavelet-based image models are inadequate for modeling patterns in images, due to the presence of unknown transformations (e.g., translation, rotation, scaling) inherent in most pattern observations. In this paper we introduce a hierarchical wavelet-based framework for modeling patterns in digital images. This framework takes advantage of the efficient image representations afforded by wavelets, while accounting for unknown pattern transformations. Given a trained model, we can use this framework to synthesize pattern observations. If the model parameters are unknown, we can infer them from labeled training data using TEMPLAR (Template Learning from Atomic Representations), a novel template learning algorithm with linear complexity. TEMPLAR employs minimum description length (MDL) complexity regularization to learn a template with a sparse representation in the wavelet domain. We illustrate template learning with examples, and discuss how TEMPLAR applies to pattern classification and denoising from multiple, unaligned observations.en_US
dc.identifier.citationC. Scott and R. D. Nowak, "Hierarchical Wavelet-Based Image Model for Pattern Analysis and Synthesis," 2000.en_US
dc.identifier.doihttp://dx.doi.org/10.1117/12.408602en_US
dc.identifier.urihttps://hdl.handle.net/1911/20340en_US
dc.language.isoengen_US
dc.subjectWaveletsen_US
dc.subjectpattern analysisen_US
dc.subjectMDLen_US
dc.subject.keywordWaveletsen_US
dc.subject.keywordpattern analysisen_US
dc.subject.keywordMDLen_US
dc.titleHierarchical Wavelet-Based Image Model for Pattern Analysis and Synthesisen_US
dc.typeConference paperen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sco2000Jul5Hierarchic.PDF
Size:
798.29 KB
Format:
Adobe Portable Document Format