Methods and Applications for Mixed Graphical Models

dc.contributor.advisorAllen, Genevera Ien_US
dc.creatorBaker, Yuliaen_US
dc.date.accessioned2019-05-16T20:35:59Zen_US
dc.date.available2019-05-16T20:35:59Zen_US
dc.date.created2017-08en_US
dc.date.issued2017-10-06en_US
dc.date.submittedAugust 2017en_US
dc.date.updated2019-05-16T20:35:59Zen_US
dc.description.abstract``Multi-view Data'' is a term used to describe heterogeneous data measured on the same set of observations but collected from different sources and of potentially different types (continuous, discrete, count). This type of data is prevalent in various fields, such as imaging genetics, national security, social networking, Internet advertising, and our particular motivation - high-throughput integrative genomics. There have been limited efforts directed at statistically modeling such mixed data jointly. In this thesis, we address this by introducing a novel class of Mixed Markov Random Field (MRFs) and Mixed Chain Markov Random Field distributions, or graphical models. Mixed MRFs assume that each node-conditional distribution arises from a different exponential family model. And Mixed Chain MRFs incorporate directed and undirected edges, in addition to different exponential family models, to produce more flexible models with less restrictive normalizibility constraints. Mixed MRFs and Mixed Chain MRFS, both yield joint densities, which can directly parameterize dependencies over mixed variables. Fitting these models to perform mixed graph selection entails estimating penalized generalized linear models with mixed covariates. Model selection with mixed covariates in a high dimensional setting, however, poses many challenges due to differences in the scale and potential signal interference between variables. In this thesis, we introduce this novel class of Mixed MRFs and Mixed Chain MRFs, study model estimation challenges theoretically and empirically, and propose a new iterative block estimation strategy. Our methods are applied to infer a gene regulatory network in three ovarian cancer studies that integrate methylation, micro-RNA expression, mutation, and gene expression data to fully understand regulatory relationships in ovarian cancer.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBaker, Yulia. "Methods and Applications for Mixed Graphical Models." (2017) Diss., Rice University. <a href="https://hdl.handle.net/1911/105527">https://hdl.handle.net/1911/105527</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/105527en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectMulti-view Dataen_US
dc.subjectmixed graphical modelsen_US
dc.subjectMarkov Random Fieldsen_US
dc.subjectmodel selectionen_US
dc.subjectgene regulatory networken_US
dc.titleMethods and Applications for Mixed Graphical Modelsen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentStatisticsen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BAKER-DOCUMENT-2017.pdf
Size:
8.48 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.6 KB
Format:
Plain Text
Description: