Hitchin Components, Riemannian Metrics and Asymptotics

dc.contributor.advisorWolf, Michaelen_US
dc.contributor.committeeMemberHardt, Roberten_US
dc.contributor.committeeMemberGillman, Adriannaen_US
dc.creatorLi, Qionglingen_US
dc.date.accessioned2016-01-25T15:27:41Zen_US
dc.date.available2016-01-25T15:27:41Zen_US
dc.date.created2014-12en_US
dc.date.issued2014-12-04en_US
dc.date.submittedDecember 2014en_US
dc.date.updated2016-01-25T15:27:41Zen_US
dc.description.abstractHigher Teichm\"uller spaces are deformation spaces arising from subsets of the space of representations of a surface group into a general Lie group, e.g., $$PSL(n,\RR)$$, which share some of the properties of classical Teichmueller space. By the non-abelian Hodge theory, such representation spaces correspond to the space of Higgs bundles. We focus on two aspects on the Higher Teichm\"uller space: Riemannian geometry and dynamics. First, we construct a new Riemannian metric on the deformation space for $$PSL(3,\RR)$$, and then prove Teichmueller space endowed with Weil-Petersson metric is totally geodesic in deformation space for $$PSL(3,\RR)$$ with the new metric. Secondly, in a joint work with Brian Collier, we are able to obtain asymptotic behaviors and related properties of representations for certain families of Higgs bundles of rank n.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLi, Qiongling. "Hitchin Components, Riemannian Metrics and Asymptotics." (2014) Diss., Rice University. <a href="https://hdl.handle.net/1911/88090">https://hdl.handle.net/1911/88090</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/88090en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectHitchin Componentsen_US
dc.subjectHiggs Bundlesen_US
dc.titleHitchin Components, Riemannian Metrics and Asymptoticsen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentMathematicsen_US
thesis.degree.disciplineNatural Sciencesen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LI-DOCUMENT-2014.pdf
Size:
749.92 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.61 KB
Format:
Plain Text
Description: