Efficient estimation of coherent risk measures for risk-averse optimization problems governed by partial differential equations with random inputs

dc.contributor.authorTakhtaganov, Timuren_US
dc.date.accessioned2018-06-26T13:59:55Zen_US
dc.date.available2018-06-26T13:59:55Zen_US
dc.date.issued2017-05en_US
dc.date.noteMay 2017en_US
dc.descriptionThis work was also published as a Rice University thesis/dissertation.en_US
dc.description.abstractThis thesis assesses and designs structure-exploiting methods for the efficient estimation of risk measures of quantities of interest in the context of optimization of partial differential equations (PDEs) with random inputs. Risk measures of the quantities of interest arise as objective functions or as constraints in the PDE-constrained optimization problems under uncertainty. A single evaluation of a risk measure requires numerical integration in a high-dimensional parameter space, which requires the solution of the PDE at many parameter samples. When the integrand is smooth in the random parameters, efficient methods, such as sparse grids, exist that substantially reduce the sample size. Unfortunately, many risk-averse formulations, such as semideviation and Conditional Value-at-Risk, introduce a non-smoothness in integrand. This work demonstrates that naive application of sparse grids and other smoothness-exploiting approaches is not beneficial in the risk-averse case. For the widely used class of coherent risk measures, this thesis proposes a new method for evaluating risk-averse objectives based on the biconjugate representation of coherent risk functions and importance sampling. The method is further enhanced by utilizing reduced order models of the PDEs under consideration. The proposed method leads to substantial reduction in the number of PDE solutions required to accurately estimate coherent risk measures. The performance of existing and of the new methods for the estimation of risk measures is demonstrated on examples of risk-averse PDE-constrained optimization problems. The resulting method can substantially reduce the number of PDE solutions required to solve optimization problems, and, therefore, enlarge the applicability of important risk measures for PDE-constrained optimization problems under uncertainty.en_US
dc.format.extent200 ppen_US
dc.identifier.citationTakhtaganov, Timur. "Efficient estimation of coherent risk measures for risk-averse optimization problems governed by partial differential equations with random inputs." (2017) <a href="https://hdl.handle.net/1911/102272">https://hdl.handle.net/1911/102272</a>.en_US
dc.identifier.digitalTR18-03en_US
dc.identifier.urihttps://hdl.handle.net/1911/102272en_US
dc.language.isoengen_US
dc.titleEfficient estimation of coherent risk measures for risk-averse optimization problems governed by partial differential equations with random inputsen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR18-03.pdf
Size:
3.54 MB
Format:
Adobe Portable Document Format