Kodaira dimensions of some moduli spaces of special hyperkähler fourfolds

dc.contributor.advisorVárilly-Alvarado, Anthonyen_US
dc.contributor.advisorGoldman, Ronen_US
dc.creatorPetok, Jacken_US
dc.date.accessioned2020-08-11T21:48:53Zen_US
dc.date.available2020-08-11T21:48:53Zen_US
dc.date.created2020-08en_US
dc.date.issued2020-08-10en_US
dc.date.submittedAugust 2020en_US
dc.date.updated2020-08-11T21:48:53Zen_US
dc.description.abstractWe study the Noether-Lefschetz locus of the moduli space $\mathcal{M}$ of $K3^{[2]}$-fourfolds with a polarization of degree $2$. Following Hassett's work on cubic fourfolds, Debarre, Iliev, and Manivel have shown that the Noether-Lefschetz locus in $\mathcal{M}$ is a countable union of special divisors $\mathcal{M}_d$, where the discriminant $d$ is a positive integer congruent to $0,2,$ or $4$ modulo 8. In this thesis, we compute the Kodaira dimensions of these special divisors for all but finitely many discriminants; in particular, we show that for $d>176$ and for many other small values of $d$, the space $\mathcal{M}_d$ is a variety of general type. The main idea of the proof is to study the Kodaira dimension of the moduli spaces using the "quasi-pullback" trick of Gritsenko-Hulek-Sankaran: by explicitly constructing certain modular forms on the period domain, we can show the plurigenera of a smooth compactification of $\mathcal{M}_d$ grow fast enough to conclude that $\mathcal{M}_d$ is of general type for all but $40$ values of $d$. We also give information about the Kodaira dimension of $\mathcal{M}_d$ for 6 additional values of $d$, leaving only 34 values of $d$ for which we cannot yet say anything about the Kodaira dimension.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationPetok, Jack. "Kodaira dimensions of some moduli spaces of special hyperkähler fourfolds." (2020) Diss., Rice University. <a href="https://hdl.handle.net/1911/109182">https://hdl.handle.net/1911/109182</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/109182en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectAlgebraic geometryen_US
dc.subjectnumber theory.en_US
dc.titleKodaira dimensions of some moduli spaces of special hyperkähler fourfoldsen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentMathematicsen_US
thesis.degree.disciplineNatural Sciencesen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PETOK-DOCUMENT-2020.pdf
Size:
897.71 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.6 KB
Format:
Plain Text
Description: