Measuring Time-Frequency Information and Complexity using the Renyi Entropies

dc.citation.bibtexNameinproceedingsen_US
dc.citation.conferenceNameIEEE International Symposium on Informatin Theory (ISIT)en_US
dc.citation.firstpage426en_US
dc.citation.locationWhistler, BCen_US
dc.contributor.authorBaraniuk, Richard G.en_US
dc.contributor.authorFlandrin, Patricken_US
dc.contributor.authorMichel, Olivieren_US
dc.contributor.orgDigital Signal Processing (http://dsp.rice.edu/)en_US
dc.date.accessioned2007-10-31T00:35:30Zen_US
dc.date.available2007-10-31T00:35:30Zen_US
dc.date.issued1995-09-01en_US
dc.date.modified2006-06-12en_US
dc.date.note2006-06-12en_US
dc.date.submitted1995-09-01en_US
dc.descriptionConference Paperen_US
dc.description.abstractIn search of a nonparametric indicator of deterministic signal complexity, we link the Renyi entropies to time-frequency representations. The resulting measures show promise in several situations where concepts like the time-bandwidth product fail.en_US
dc.identifier.citationR. G. Baraniuk, P. Flandrin and O. Michel, "Measuring Time-Frequency Information and Complexity using the Renyi Entropies," 1995.en_US
dc.identifier.urihttps://hdl.handle.net/1911/19698en_US
dc.language.isoengen_US
dc.subject.otherDSP for Communicationsen_US
dc.titleMeasuring Time-Frequency Information and Complexity using the Renyi Entropiesen_US
dc.typeConference paperen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bar1995Sep5MeasuringT.PDF
Size:
128.35 KB
Format:
Adobe Portable Document Format