Efficient Numerical Methods for Least-Norm Regularization

dc.contributor.authorSorensen, D.C.en_US
dc.contributor.authorRojas, M.en_US
dc.date.accessioned2018-06-19T17:45:58Zen_US
dc.date.available2018-06-19T17:45:58Zen_US
dc.date.issued2010-03en_US
dc.date.noteMarch 2010en_US
dc.description.abstractThe problem min ||x||, s.t. ||b-Ax||≤ ε arises in the regularization of discrete forms of ill-posed problems when an estimate of the noise level in the data is available. After deriving necessary and sufficient optimality conditions for this problem, we propose two different classes of algorithms: a factorization-based algorithm for small to medium problems, and matrix-free iterations for the large-scale case. Numerical results illustrating the performance of the methods demonstrate that both classes of algorithms are efficient, robust, and accurate. An interesting feature of our formulation is that there is no situation corresponding to the so-called hard case that occurs in the standard trust-region subproblem. Neither small singular values nor vanishing coefficients present any difficulty to solving the relevant secular equations.en_US
dc.format.extent23 ppen_US
dc.identifier.citationSorensen, D.C. and Rojas, M.. "Efficient Numerical Methods for Least-Norm Regularization." (2010) <a href="https://hdl.handle.net/1911/102151">https://hdl.handle.net/1911/102151</a>.en_US
dc.identifier.digitalTR10-08en_US
dc.identifier.urihttps://hdl.handle.net/1911/102151en_US
dc.language.isoengen_US
dc.titleEfficient Numerical Methods for Least-Norm Regularizationen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR10-08.pdf
Size:
408.89 KB
Format:
Adobe Portable Document Format