Multiscale Likelihood Analysis and Image Reconstruction

dc.citation.bibtexNameinproceedingsen_US
dc.citation.conferenceNameSPIE Wavelets Xen_US
dc.citation.locationSan Diego, CAen_US
dc.contributor.authorWillett, Rebeccaen_US
dc.contributor.authorNowak, Robert Daviden_US
dc.contributor.orgDigital Signal Processing (http://dsp.rice.edu/)en_US
dc.date.accessioned2007-10-31T01:10:04Zen_US
dc.date.available2007-10-31T01:10:04Zen_US
dc.date.issued2003-08-20en_US
dc.date.modified2003-08-27en_US
dc.date.note2003-08-27en_US
dc.date.submitted2003-08-20en_US
dc.descriptionConference Paperen_US
dc.description.abstractThe nonparametric multiscale polynomial and platelet methods presented here are powerful new tools for signal and image denoising and reconstruction. Unlike traditional wavelet-based multiscale methods, these methods are both well suited to processing Poisson or multinomial data and capable of preserving image edges. At the heart of these new methods lie multiscale signal decompositions based on polynomials in one dimension and multiscale image decompositions based on what the authors call platelets in two dimensions. Platelets are localized functions at various positions, scales and orientations that can produce highly accurate, piecewise linear approximations to images consisting of smooth regions separated by smooth boundaries. Polynomial and platelet-based maximum penalized likelihood methods for signal and image analysis are both tractable and computationally efficient. Polynomial methods offer near minimax convergence rates for broad classes of functions including Besov spaces. Upper bounds on the estimation error are derived using an information-theoretic risk bound based on squared Hellinger loss. Simulations establish the practical effectiveness of these methods in applications such as density estimation, medical imaging, and astronomy.en_US
dc.description.sponsorshipOffice of Naval Researchen_US
dc.description.sponsorshipArmy Research Officeen_US
dc.description.sponsorshipNational Science Foundationen_US
dc.identifier.citationR. Willett and R. D. Nowak, "Multiscale Likelihood Analysis and Image Reconstruction," 2003.en_US
dc.identifier.doihttp://dx.doi.org/10.1117/12.508524en_US
dc.identifier.urihttps://hdl.handle.net/1911/20453en_US
dc.language.isoengen_US
dc.subjectnonparametric estimationen_US
dc.subjectmultiresolutionen_US
dc.subjectwaveletsen_US
dc.subjectdenoisingen_US
dc.subjecttomographyen_US
dc.subject.keywordnonparametric estimationen_US
dc.subject.keywordmultiresolutionen_US
dc.subject.keywordwaveletsen_US
dc.subject.keyworddenoisingen_US
dc.subject.keywordtomographyen_US
dc.subject.otherImage Processing and Pattern analysisen_US
dc.subject.otherWavelet based Signal/Image Processingen_US
dc.subject.otherMultiscale Methodsen_US
dc.subject.otherMedical Imagining Applicationsen_US
dc.titleMultiscale Likelihood Analysis and Image Reconstructionen_US
dc.typeConference paperen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Wil2003Aug5Multiscal.PDF
Size:
1.17 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Wil2003Aug5Multiscal.PPT
Size:
1.95 MB
Format:
Microsoft Powerpoint