On the approximation of the Dirichlet to Neumann map for high contrast two phase composites

dc.contributor.advisorBorcea, Lilianaen_US
dc.contributor.committeeMemberRiviere, Beatrice M.en_US
dc.contributor.committeeMemberGorb, Yuliyaen_US
dc.contributor.committeeMemberSymes, William W.en_US
dc.contributor.committeeMemberHardt, Robert M.en_US
dc.creatorWang, Yingpeien_US
dc.date.accessioned2013-09-16T18:32:26Zen_US
dc.date.accessioned2013-09-16T18:32:28Zen_US
dc.date.available2013-09-16T18:32:26Zen_US
dc.date.available2013-09-16T18:32:28Zen_US
dc.date.created2013-05en_US
dc.date.issued2013-09-16en_US
dc.date.submittedMay 2013en_US
dc.date.updated2013-09-16T18:32:28Zen_US
dc.description.abstractMany problems in the natural world have high contrast properties, like transport in composites, fluid in porous media and so on. These problems have huge numerical difficulties because of the singularities of their solutions. It may be really expensive to solve these problems directly by traditional numerical methods. It is necessary and important to understand these problems more in mathematical aspect first, and then using the mathematical results to simplify the original problems or develop more efficient numerical methods. In this thesis we are going to approximate the Dirichlet to Neumann map for the high contrast two phase composites. The mathematical formulation of our problem is to approximate the energy for an elliptic equation with arbitrary boundary conditions. The boundary conditions may have highly oscillations, which makes our problems very interesting and difficult. We developed a method to divide the domain into two different subdomains, one is close to and the other one is far from the boundary, and we can approximate the energy in these two subdomains separately. In the subdomain far from the boundary, the energy is not influenced that much by the boundary conditions. Methods for approximation of the energy in this subdomain are studied before. In the subdomain near the boundary, the energy depends on the boundary conditions a lot. We used a new method to approximate the energy there such that it works for any kind of boundary conditions. By this way, we can have the approximation for the total energy of high contrast problems with any boundary conditions. In other words, we can have a matrix up to any dimension to approximate the continuous Dirichlet to Neumann map of the high contrast composites. Then we will use this matrix as a preconditioner in domain decomposition methods, such that our numerical methods are very efficient to solve the problems in high contrast composites.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationWang, Yingpei. "On the approximation of the Dirichlet to Neumann map for high contrast two phase composites." (2013) Master’s Thesis, Rice University. <a href="https://hdl.handle.net/1911/72061">https://hdl.handle.net/1911/72061</a>.en_US
dc.identifier.slug123456789/ETD-2013-05-475en_US
dc.identifier.urihttps://hdl.handle.net/1911/72061en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectHigh contrasten_US
dc.subjectDirichlet to Neumann mapen_US
dc.subjectNetwork approximationen_US
dc.titleOn the approximation of the Dirichlet to Neumann map for high contrast two phase compositesen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentComputational and Applied Mathematicsen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Artsen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
WANG-THESIS.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description: