Measurements vs. Bits: Compressed Sensing meets Information Theory

dc.citation.bibtexNameinproceedingsen_US
dc.citation.conferenceNameAllerton Conference on Communication, Control and Computingen_US
dc.contributor.authorSarvotham, Shriramen_US
dc.contributor.authorBaron, Droren_US
dc.contributor.authorBaraniuk, Richard G.en_US
dc.contributor.orgDigital Signal Processing (http://dsp.rice.edu/)en_US
dc.date.accessioned2007-10-31T01:03:56Zen_US
dc.date.available2007-10-31T01:03:56Zen_US
dc.date.issued2006-09-01en_US
dc.date.modified2006-10-05en_US
dc.date.note2006-10-05en_US
dc.date.submitted2006-09-01en_US
dc.descriptionConference Paperen_US
dc.description.abstractCompressed sensing is a new framework for acquiring sparse signals based on the revelation that a small number of linear projections (measurements) of the signal contain enough information for its reconstruction. The foundation of Compressed sensing is built on the availability of noise-free measurements. However, measurement noise is unavoidable in analog systems and must be accounted for. We demonstrate that measurement noise is the crucial factor that dictates the number of measurements needed for reconstruction. To establish this result, we evaluate the information contained in the measurements by viewing the measurement system as an information theoretic channel. Combining the capacity of this channel with the rate-distortion function of the sparse signal, we lower bound the rate-distortion performance of a compressed sensing system. Our approach concisely captures the effect of measurement noise on the performance limits of signal reconstruction, thus enabling to benchmark the performance of specific reconstruction algorithms.en_US
dc.identifier.citationS. Sarvotham, D. Baron and R. G. Baraniuk, "Measurements vs. Bits: Compressed Sensing meets Information Theory," 2006.en_US
dc.identifier.urihttps://hdl.handle.net/1911/20323en_US
dc.language.isoengen_US
dc.relation.projecthttp://www.dsp.rice.edu/csen_US
dc.subjectCompressed sensingen_US
dc.subjectinformation theoryen_US
dc.subject.keywordCompressed sensingen_US
dc.subject.keywordinformation theoryen_US
dc.subject.otherInformation Processingen_US
dc.titleMeasurements vs. Bits: Compressed Sensing meets Information Theoryen_US
dc.typeConference paperen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Sar2006Sep5Measuremen.PDF
Size:
127.07 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Sar2006Sep5Measuremen.PPT
Size:
703.5 KB
Format:
Microsoft Powerpoint