Nonlinear model reduction via discrete empirical interpolation

dc.contributor.advisorSorensen, Danny C.en_US
dc.creatorChaturantabut, Saifonen_US
dc.date.accessioned2013-03-08T00:33:05Zen_US
dc.date.available2013-03-08T00:33:05Zen_US
dc.date.issued2012en_US
dc.description.abstractThis thesis proposes a model reduction technique for nonlinear dynamical systems based upon combining Proper Orthogonal Decomposition (POD) and a new method, called the Discrete Empirical Interpolation Method (DEIM). The popular method of Galerkin projection with POD basis reduces dimension in the sense that far fewer variables are present, but the complexity of evaluating the nonlinear term generally remains that of the original problem. DEIM, a discrete variant of the approach from [11], is introduced and shown to effectively overcome this complexity issue. State space error estimates for POD-DEIM reduced systems are also derived. These [Special characters omitted.] error estimates reflect the POD approximation property through the decay of certain singular values and explain how the DEIM approximation error involving the nonlinear term comes into play. An application to the simulation of nonlinear miscible flow in a 2-D porous medium shows that the dynamics of a complex full-order system of dimension 15000 can be captured accurately by the POD-DEIM reduced system of dimension 40 with a factor of [Special characters omitted.] (1000) reduction in computational time.en_US
dc.format.extent165 p.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.callnoTHESIS MATH.SCI. 2012 CHATURANTABUTen_US
dc.identifier.citationChaturantabut, Saifon. "Nonlinear model reduction via discrete empirical interpolation." (2012) Diss., Rice University. <a href="https://hdl.handle.net/1911/70218">https://hdl.handle.net/1911/70218</a>.en_US
dc.identifier.digitalChaturantabutSen_US
dc.identifier.urihttps://hdl.handle.net/1911/70218en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectApplied sciencesen_US
dc.subjectNonlinear model reductionen_US
dc.subjectEmpirical interpolationen_US
dc.subjectNonlinear differential equationsen_US
dc.subjectProper orthogonal decompositionen_US
dc.subjectMechanicsen_US
dc.titleNonlinear model reduction via discrete empirical interpolationen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentMathematical Sciencesen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ChaturantabutS.pdf
Size:
5.48 MB
Format:
Adobe Portable Document Format