Error Forgetting of Bregman Iteration

dc.contributor.authorYin, Wotaoen_US
dc.contributor.authorOsher, Stanleyen_US
dc.date.accessioned2018-06-19T17:47:59Zen_US
dc.date.available2018-06-19T17:47:59Zen_US
dc.date.issued2012-01en_US
dc.date.noteJanuary 2012en_US
dc.description.abstractThis short article analyzes an interesting property of the Bregman iterative procedure for minimizing a convex piece-wise linear function J(x) subject to linear constraints Ax=b. The procedure obtains its solution by solving a sequence of unconstrained subproblems, each minimizing J(x) + (1/2) ||Ax-bk||2, and iteratively updating bk. In practice, the subproblems are solved with finite accuracy. Let wk denote the numerical error at iteration k. If all wk are sufficiently small, Bregman iteration identifies the optimal face in finitely many iterations, and afterward, it enjoys an interesting error-forgetting property: the distance between the current point and the optimal solution set is bounded by ||wk+1-wk||, independent of the numerical errors at previous iterations. This property partially explains why the Bregman iterative procedure works well for sparse optimization and ||x||1 minimization. The error-forgetting property is unique to piece-wise linear functions (i.e., polyhedral functions) J(x), and it is new to the literature of the augmented Lagrangian method.en_US
dc.format.extent9 ppen_US
dc.identifier.citationYin, Wotao and Osher, Stanley. "Error Forgetting of Bregman Iteration." (2012) <a href="https://hdl.handle.net/1911/102193">https://hdl.handle.net/1911/102193</a>.en_US
dc.identifier.digitalTR12-03en_US
dc.identifier.urihttps://hdl.handle.net/1911/102193en_US
dc.language.isoengen_US
dc.titleError Forgetting of Bregman Iterationen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR12-03.PDF
Size:
334.43 KB
Format:
Adobe Portable Document Format