Compression of Higher Dimensional Functions Containing Smooth Discontinuities

dc.citation.bibtexNameinproceedingsen_US
dc.citation.conferenceNameConference on Information Sciences and Systemsen_US
dc.citation.locationPrinceton, NJen_US
dc.contributor.authorChandrasekaran, Venkaten_US
dc.contributor.authorWakin, Michaelen_US
dc.contributor.authorBaron, Droren_US
dc.contributor.authorBaraniuk, Richard G.en_US
dc.contributor.orgDigital Signal Processing (http://dsp.rice.edu/)en_US
dc.date.accessioned2007-10-31T00:38:55Zen_US
dc.date.available2007-10-31T00:38:55Zen_US
dc.date.issued2004-03-01en_US
dc.date.modified2006-06-19en_US
dc.date.note2004-03-16en_US
dc.date.submitted2004-03-01en_US
dc.descriptionConference paperen_US
dc.description.abstractDiscontinuities in data often represent the key information of interest. Efficient representations for such discontinuities are important for many signal processing applications, including compression, but standard Fourier and wavelet representations fail to efficiently capture the structure of the discontinuities. These issues have been most notable in image processing, where progress has been made on modeling and representing one-dimensional edge discontinuities along <i>C&sup2;</i> curves. Little work, however, has been done on efficient representations for higher dimensional functions or on handling higher orders of smoothness in discontinuities. In this paper, we consider the class of <i>N</i>-dimensional Horizon functions containing a <i>C<sup>K</sup></i> smooth singularity in N-1 dimensions, which serves as a manifold boundary between two constant regions; we first derive the optimal rate-distortion function for this class. We then introduce the <i>surflet</i> representation for approximation and compression of Horizon-class functions. Surflets enable a multiscale, piecewise polynomial approximation of the discontinuity. We propose a compression algorithm using surflets that achieves the optimal asymptotic rate-distortion performance for this function class. Equally important, the algorithm can be implemented using knowledge of only the <i>N</i>-dimensional function, without explicitly estimating the (<i>N</i>-1)-dimensional discontinuity.en_US
dc.identifier.citationV. Chandrasekaran, M. Wakin, D. Baron and R. G. Baraniuk, "Compression of Higher Dimensional Functions Containing Smooth Discontinuities," 2004.en_US
dc.identifier.urihttps://hdl.handle.net/1911/19772en_US
dc.language.isoengen_US
dc.subjectwedgeletsen_US
dc.subjectsurfletsen_US
dc.subjectwaveletsen_US
dc.subjectrate-distortionen_US
dc.subjectapproximationen_US
dc.subjectedgesen_US
dc.subjectgeometryen_US
dc.subject.keywordwedgeletsen_US
dc.subject.keywordsurfletsen_US
dc.subject.keywordwaveletsen_US
dc.subject.keywordrate-distortionen_US
dc.subject.keywordapproximationen_US
dc.subject.keywordedgesen_US
dc.subject.keywordgeometryen_US
dc.subject.otherMultiscale geometry processingen_US
dc.titleCompression of Higher Dimensional Functions Containing Smooth Discontinuitiesen_US
dc.typeConference paperen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Cha2004Mar5Compressio.PDF
Size:
134.38 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Cha2004Mar5Compressio.PS
Size:
316.07 KB
Format:
Postscript Files