Multiscale Geometric Image Processing

dc.citation.bibtexNameinproceedingsen_US
dc.citation.conferenceNameSPIE Visual Communications and Image Processingen_US
dc.citation.locationLugano, Switzerlanden_US
dc.contributor.authorRomberg, Justinen_US
dc.contributor.authorWakin, Michaelen_US
dc.contributor.authorBaraniuk, Richard G.en_US
dc.contributor.orgDigital Signal Processing (http://dsp.rice.edu/)en_US
dc.date.accessioned2007-10-31T01:02:57Zen_US
dc.date.available2007-10-31T01:02:57Zen_US
dc.date.issued2003-07-01en_US
dc.date.modified2006-06-05en_US
dc.date.note2003-05-13en_US
dc.date.submitted2003-07-01en_US
dc.descriptionConference Paperen_US
dc.description.abstractSince their introduction a little more than 10 years ago, wavelets have revolutionized image processing. Wavelet based algorithms define the state-of-the-art for applications including image coding (JPEG2000), restoration, and segmentation. Despite their success, wavelets have significant shortcomings in their treatment of edges. Wavelets do not parsimoniously capture even the simplest geometrical structure in images, and wavelet based processing algorithms often produce images with ringing around the edges. As a first step towards accounting for this structure, we will show how to explicitly capture the geometric regularity of contours in cartoon images using the wedgelet representation and a multiscale geometry model. The wedgelet representation builds up an image out of simple piecewise constant functions with linear discontinuities. We will show how the geometry model, by putting a joint distribution on the orientations of the linear discontinuities, allows us to weigh several factors when choosing the wedgelet representation: the error between the representation and the original image, the parsimony of the representation, and whether the wedgelets in the representation form "natural" geometrical structures. Finally, we will analyze a simple wedgelet coder based on these principles, and show that it has optimal asymptotic performance for simple cartoon images.en_US
dc.identifier.citationJ. Romberg, M. Wakin and R. G. Baraniuk, "Multiscale Geometric Image Processing," 2003.en_US
dc.identifier.doihttp://dx.doi.org/10.1117/12.509903en_US
dc.identifier.urihttps://hdl.handle.net/1911/20302en_US
dc.language.isoengen_US
dc.subjectwedgeletsen_US
dc.subjectgeometrical modelingen_US
dc.subject.keywordwedgeletsen_US
dc.subject.keywordgeometrical modelingen_US
dc.subject.otherMultiscale Methodsen_US
dc.titleMultiscale Geometric Image Processingen_US
dc.typeConference paperen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Rom2003Jul5Multiscal.PDF
Size:
137.76 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Rom2003Jul5Multiscal.PS
Size:
774.71 KB
Format:
Postscript Files