Concavity Cuts for Disjoint Bilinear Programming

dc.contributor.authorAlarie, Stéphaneen_US
dc.contributor.authorAudet, Charlesen_US
dc.contributor.authorJaumard, Brigitteen_US
dc.contributor.authorSavard, Gillesen_US
dc.date.accessioned2018-06-18T17:47:34Zen_US
dc.date.available2018-06-18T17:47:34Zen_US
dc.date.issued1999-09en_US
dc.date.noteSeptember 1999en_US
dc.description.abstractWe pursue the study of concavity cuts for the disjoint bilinear programming problem. This optimization problem has two equivalent symmetric linear maxmin reformulations, leading to two sets of concavity cuts. We first examine the depth of these cuts by considering the assumptions on the boundedness of the feasible regions of both maxmin and bilinear formulations. We next propose a branch and bound algorithm which makes use of concavity cuts. We also present a procedure that eliminates degenerate solutions. Extensive computational experiences are reported. Sparse problems with up to 500 variables in each disjoint set and 100 constraints, and dense problems with up to 60 variables again in each set and 60 constraints are solved in reasonable computing times.en_US
dc.format.extent27 ppen_US
dc.identifier.citationAlarie, Stéphane, Audet, Charles, Jaumard, Brigitte, et al.. "Concavity Cuts for Disjoint Bilinear Programming." (1999) <a href="https://hdl.handle.net/1911/101926">https://hdl.handle.net/1911/101926</a>.en_US
dc.identifier.digitalTR99-21en_US
dc.identifier.urihttps://hdl.handle.net/1911/101926en_US
dc.language.isoengen_US
dc.titleConcavity Cuts for Disjoint Bilinear Programmingen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR99-21.pdf
Size:
349.05 KB
Format:
Adobe Portable Document Format