A DEIM Induced CUR Factorization

dc.contributor.authorSorensen, D.C.en_US
dc.contributor.authorEmbree, M.en_US
dc.date.accessioned2018-06-19T17:49:27Zen_US
dc.date.available2018-06-19T17:49:27Zen_US
dc.date.issued2014-07en_US
dc.date.noteJuly 2014, revised September 2015en_US
dc.description.abstractWe derive a CUR matrix factorization based on the Discrete Empirical Interpolation Method (DEIM). For a given matrix A, such a factorization provides a low rank approximate decomposition of the form A ≈ CUR, where C and R are subsets of the columns and rows of A, and U is constructed to make CUR a good approximation. Given a low-rank singular value decomposition A ≈ VSWT, the DEIM procedure uses V and W to select the columns and rows of A that form C and R. Through an error analysis applicable to a general class of CUR factorizations, we show that the accuracy tracks the optimal approximation error within a factor that depends on the conditioning of submatrices of V and W. For large-scale problems, V and W can be approximated using an incremental QR algorithm that makes one pass through A. Numerical examples illustrate the favorable performance of the DEIM-CUR method, compared to CUR approximations based on leverage scores.en_US
dc.format.extent30 ppen_US
dc.identifier.citationSorensen, D.C. and Embree, M.. "A DEIM Induced CUR Factorization." (2014) <a href="https://hdl.handle.net/1911/102226">https://hdl.handle.net/1911/102226</a>.en_US
dc.identifier.digitalTR14-04en_US
dc.identifier.urihttps://hdl.handle.net/1911/102226en_US
dc.language.isoengen_US
dc.titleA DEIM Induced CUR Factorizationen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR14-04.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format