Seismic imaging of the Upper Mantle structure and dynamics beneath the Southern Caribbean plate boundary and Venezuela

Date
2013-11-01
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

The Caribbean-South America plate boundary has a complicated tectonic history that has been matter of debate and the focus of many studies for decades, yet many questions remain unanswered. The aim of this work, developed within the framework of the BOLIVAR (USA) and GEODINOS (Venezuela) projects, is to use different seismological techniques to study the lithospheric structure under the southern Caribbean and Venezuela, in order to understand some aspects of the present structure and its tectonic evolution. A shear wave splitting analysis in northwestern Venezuela revealed three areas with different deformation mechanisms: (1) Islands and coastal regions have large splitting times (~2-3 s) and a fast polarization direction parallel to the direction of the relative plate motion of the Caribbean plate respect to South America, which can be explained by a strong eastward flow confined at the CAR-SA plate boundary. (2) The stable South America plate showed weak seismic anisotropy with an origin likely in the asthenosphere. (3) Large splitting times and a ~NE-SW fast direction are observed at stations deployed along the Mérida Andes range, suggesting that the subcontinental mantle is also deformed beneath the range. It is likely the lithospheric mantle played a major, if not dominant, role in the formation of the Mérida Andes. The upper mantle structure of the area was obtained by combining three types of seismic data: Ps and Sp receiver functions and Rayleigh wave tomography. Results reveal the presence of the Moho of the subducting Caribbean Plate beneath the northwestern part of the Maracaibo Block. Tomographic images indicate that the subducting Atlantic slab appears to be attached to the continental South American lithosphere, pulling it down and removing the continental lithospheric mantle beneath the Serrania del Interior. A lithospheric thickness map was also obtained. The lithosphere asthenosphere boundary shows significant variations and seems to correlate well with major tectonic provinces in the region. Finally ambient noise cross-correlations between station pairs yields to Empirical Greens Function as waveform data input for the adjoint tomography based on spectral element methods. The adjoint tomography utilizes a more accurate full wave finite-frequency theory compared to the previous ray theory, and will iteratively refine the initial smooth 3D model to achieve more detailed high-resolution images of the upper most mantle structure of eastern Venezuela. Low velocity anomalies correspond to the major sedimentary basins and high velocity anomalies correspond to the stable craton.

Description
Degree
Doctor of Philosophy
Type
Thesis
Keywords
Southern Caribbean, Venezuela, Receiver functions, Seismic anisotropy, Surface wave tomography, Ambient noise tomography, Global seismology
Citation

Masy, Jeniffer. "Seismic imaging of the Upper Mantle structure and dynamics beneath the Southern Caribbean plate boundary and Venezuela." (2013) Diss., Rice University. https://hdl.handle.net/1911/77227.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page