Amniotic Fluid-derived Stem Cell Isolation, Maintenance, and Differentiation for Cardiac Tissue Engineering

Date
2014-12-05
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Cardiac tissue engineering is limited by the lack of a clinically relevant cell source. Amniotic fluid-derived stem cells (AFSC) are broadly multipotent and proliferate rapidly, making them a promising cell source for tissue engineering applications. AFSC can also be utilized autologously for congenital heart defects, the most severe of which are identified in utero, allowing for ample time to isolate and expand the cells to prepare a patch for implantation shortly after birth. This thesis focused on the characterization of AFSC and their potential to differentiate towards a cardiac lineage. For characterization studies, stem cells from amniotic fluid were sorted for c-kit protein expression at the first passage or left unfractionated and then expanded in 5 different media. Protein and gene expression of markers common to pluripotent stem cells were analyzed from passages 2 through 6, and differentiation capacity of the stem cells towards osteogenic, endothelial, and neurogenic lineages were compared at passages 5 and 6. The unfractionated AFSC maintained higher expression of stem cell markers but displayed a significant decrease in those markers at passage 6. Correspondingly, indicators of the lineages of interest were higher following differentiation at passage 5 compared to passage 6. To investigate the cardiac tissue engineering potential of AFSC, cells were differentiated in indirect co- cultures with neonatal rat ventricular myocytes (NRVM) and under a small molecule- based directed differentiation regime. NRVM induce AFSC to form functional gap junctions following indirect co-culture. AFSC undergoing directed differentiation also localized gap junctions to cell membranes and additionally demonstrated an up regulation in cardiac transcription factors and sarcomere proteins. In both co-culture and small molecule-based differentiation methods, however, no organized sarcomeres or spontaneously beating cells were observed. While AFSC hold great potential for regenerative medicine applications, particularly in congenital defect repair, functional cardiomyocytes have not yet been obtained, and it is likely that additional cues beyond chemical signaling and growth factors will be required. Overall, these studies led to a greater understanding of the cardiac potential of AFSC and the effect of sorting and culture conditions on maintenance of stem cell properties in AFSC.

Description
Degree
Doctor of Philosophy
Type
Thesis
Keywords
amniotic fluid-derived stem cells, cardiac, tissue engineering, stem cells, differentiation
Citation

Connell, Jennifer Petsche. "Amniotic Fluid-derived Stem Cell Isolation, Maintenance, and Differentiation for Cardiac Tissue Engineering." (2014) Diss., Rice University. https://hdl.handle.net/1911/87756.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page